示例#1
0
    def __init__(self,
                 nusc: NuScenes,
                 config: DetectionConfig,
                 result_path: str,
                 eval_set: str,
                 output_dir: str = None,
                 verbose: bool = True):
        """
        Initialize a NuScenesEval object.
        :param nusc: A NuScenes object.
        :param config: A DetectionConfig object.
        :param result_path: Path of the nuScenes JSON result file.
        :param eval_set: The dataset split to evaluate on, e.g. train or val.
        :param output_dir: Folder to save plots and results to.
        :param verbose: Whether to print to stdout.
        """
        self.nusc = nusc
        self.result_path = result_path
        self.eval_set = eval_set
        self.output_dir = output_dir
        self.verbose = verbose
        self.cfg = config

        # Make dirs
        self.plot_dir = os.path.join(self.output_dir, 'plots')
        if not os.path.isdir(self.output_dir):
            os.makedirs(self.output_dir)
        if not os.path.isdir(self.plot_dir):
            os.makedirs(self.plot_dir)

        # Load data
        self.pred_boxes = load_prediction(self.result_path,
                                          self.cfg.max_boxes_per_sample,
                                          verbose=verbose)
        self.gt_boxes = load_gt(self.nusc, self.eval_set, verbose=verbose)

        assert set(self.pred_boxes.sample_tokens) == set(self.gt_boxes.sample_tokens), \
            "Samples in split doesn't match samples in predictions."

        # Add center distances
        self.pred_boxes = add_center_dist(nusc, self.pred_boxes)
        self.gt_boxes = add_center_dist(nusc, self.gt_boxes)

        # Filter boxes (distance, points per box, etc.)
        if verbose:
            print('=> Filtering predictions')
        self.pred_boxes = filter_eval_boxes(nusc,
                                            self.pred_boxes,
                                            self.cfg.class_range,
                                            verbose=verbose)
        if verbose:
            print('=> Filtering ground truth annotations')
        self.gt_boxes = filter_eval_boxes(nusc,
                                          self.gt_boxes,
                                          self.cfg.class_range,
                                          verbose=verbose)

        self.sample_tokens = self.gt_boxes.sample_tokens
示例#2
0
 def __init__(
     self,
     *,
     data_root=const.DEFAULT_DATA_ROOT,
     split="train",
     version="v1.0",
     full_dataset: bool = False,
     download=False,
     sensor_data: List[str] = SENSOR_DATA_KEYS,
     coordinates="global",
 ):
     self.root = os.path.join(data_root, NUSCENES_LOCAL_PATH)
     if version not in VERSIONS:
         raise ValueError(
             f"version provided was {version} but only valid versions are: "
             f"{VERSIONS}")
     if full_dataset is False:
         split = f"mini_{split}"
         version = f"{version}-mini"
     else:
         version = f"{version}-trainval"
     if download:
         self.download(version=version)
     nu = NuScenes(dataroot=self.root, version=version)
     self.nu = nu
     self.scenes = nu.scene
     self.split = split
     self.sample_tokens = loaders.load_gt(nusc=nu,
                                          eval_split=split).sample_tokens
     for s in sensor_data:
         if s not in SENSOR_DATA_KEYS:
             raise ValueError(f"sensor key: {s} is not a valid sensor. "
                              f"Valid sensors are: {SENSOR_DATA_KEYS}")
     self.data_keys = sensor_data
     if coordinates not in COORDINATES:
         raise ValueError(f"coordinates can only be one of {COORDINATES} "
                          f"but {self.coordinates} was given.")
     self.coordinates = coordinates