def rotate3d(origin, angle_quat, point_in): # "rotate around a point in 3d space" # subtract "origin" to move the whole system to rotating around 0,0,0 point = [p - o for p, o in zip(point_in, origin)] # might need to scale the point down to unit-length??? # i'll do it just to be safe, it couldn't hurt length = core.my_euclidian_distance(point) if length != 0: point = [p / length for p in point] # set up the math as instructed by math.stackexchange p_vect = [0] + point r_prime_vect = core.my_quat_conjugate(angle_quat) # r_prime_vect = [angle_quat[0], -angle_quat[1], -angle_quat[2], -angle_quat[3]] # P' = R * P * R' # P' = H( H(R,P), R') temp = core.hamilton_product(angle_quat, p_vect) p_prime_vect = core.hamilton_product(temp, r_prime_vect) # note that the first element of P' will always be 0 point = p_prime_vect[1:4] # might need to undo scaling the point down to unit-length??? point = [p * length for p in point] # re-add "origin" to move the system to where it should have been point = [p + o for p, o in zip(point, origin)] return point
def swing_twist_decompose(quat_in, axis): """ Decompose the rotation on to 2 parts. 1. Twist - rotation around the "direction" vector 2. Swing - rotation around axis that is perpendicular to "direction" vector The rotation can be composed back by quat_in = swing * twist has singularity in case of swing_rotation close to 180 degrees rotation. if the input quaternion is of non-unit length, the outputs are non-unit as well otherwise, outputs are both unit output = (swing, twist) """ # vector3 quat_rotation_axis( quat_in.x, quat_in.y, quat_in.z ); // rotation axis # quat rotation axis quat_rotation_axis = quat_in[1:4] # vector3 p = projection( quat_rotation_axis, axis ); // return projection x on to y (parallel component) p = core.my_projection(quat_rotation_axis, axis) # twist.set( p.x, p.y, p.z, quat_in.w ); // but i use them as W X Y Z twist = [quat_in[0], p[0], p[1], p[2]] # twist.normalize(); length = core.my_euclidian_distance(twist) twist = [t / length for t in twist] # swing = quat_in * twist.conjugated(); twist_conjugate = core.my_quat_conjugate(twist) swing = core.hamilton_product(quat_in, twist_conjugate) return swing, twist
def get_corner_sharpness_factor( quatA: Tuple[float, float, float, float], quatB: Tuple[float, float, float, float], quatC: Tuple[float, float, float, float]) -> float: """ Calculate a [0.0-1.0] factor indicating how "sharp" the corner is at B. By "corner" I mean the directional change when A->B stops and B->C begins. If they are going the same angular "direction", then return 1.0. If they are going perfectly opposite directions, return 0.0. Otherwise return something in between. The option ROTATION_CORNER_SHARPNESS_FACTOR_MODE controls what the transfer curve looks like from angle to factor. :param quatA: quaterinon WXYZ for frame A :param quatB: quaterinon WXYZ for frame B :param quatC: quaterinon WXYZ for frame C :return: float [0.0-1.0] """ # to compensate for the angle difference, both will be slowed by some amount # IDENTICAL IMPACT # first, find the deltas between the quaternions deltaquat_AB = core.hamilton_product(core.my_quat_conjugate(quatA), quatB) deltaquat_BC = core.hamilton_product(core.my_quat_conjugate(quatB), quatC) # to get sensible results below, ignore the "W" component and only use the XYZ components, treat as 3d vector deltavect_AB = deltaquat_AB[1:4] deltavect_BC = deltaquat_BC[1:4] # second, find the angle between these two deltas # use the plain old "find the angle between two vectors" formula t = core.my_euclidian_distance(deltavect_AB) * core.my_euclidian_distance( deltavect_BC) if t == 0: # this happens when one vector has a length of 0 ang_d = 0 else: # technically the clamp shouldn't be necessary but floating point inaccuracy caused it to do math.acos(1.000000002) which crashed lol shut_up = core.my_dot(deltavect_AB, deltavect_BC) / t shut_up = core.clamp(shut_up, -1.0, 1.0) ang_d = math.acos(shut_up) # print(math.degrees(ang_d)) # if ang = 0, perfectly colinear, factor = 1 # if ang = 180, perfeclty opposite, factor = 0 factor = 1 - (math.degrees(ang_d) / 180) # print(factor) # ANGLE_SHARPNESS_FACTORS.append(factor) if ROTATION_CORNER_SHARPNESS_FACTOR_MODE == 1: # disabled out_factor = 1 elif ROTATION_CORNER_SHARPNESS_FACTOR_MODE == 2: # linear out_factor = factor elif ROTATION_CORNER_SHARPNESS_FACTOR_MODE == 3: # square root out_factor = math.sqrt(factor) elif ROTATION_CORNER_SHARPNESS_FACTOR_MODE == 4: # piecewise floored, (0,.5) to (.5,1) out_factor = 0.5 + factor out_factor = core.clamp(out_factor, 0.0, 1.0) else: out_factor = 1 out_factor = core.clamp(out_factor, 0.0, 1.0) return out_factor
def main(moreinfo=True): # prompt PMX name core.MY_PRINT_FUNC("Please enter name of PMX input file:") input_filename_pmx = core.MY_FILEPROMPT_FUNC(".pmx") pmx = pmxlib.read_pmx(input_filename_pmx, moreinfo=moreinfo) # get bones realbones = pmx.bones # then, make 2 lists: one starting from jp_righttoe, one starting from jp_lefttoe # start from each "toe" bone (names are known), go parent-find-parent-find until reaching no-parent bonechain_r = build_bonechain(realbones, jp_righttoe) bonechain_l = build_bonechain(realbones, jp_lefttoe) # assert that the bones were found, have correct names, and are in the correct positions # also verifies that they are direct parent-child with nothing in between try: assert bonechain_r[-1].name == jp_righttoe assert bonechain_r[-2].name == jp_rightfoot assert bonechain_l[-1].name == jp_lefttoe assert bonechain_l[-2].name == jp_leftfoot except AssertionError: core.MY_PRINT_FUNC( "ERROR: unexpected structure found for foot/toe bones, verify semistandard names and structure" ) raise RuntimeError() # then walk down these 2 lists, add each name to a set: build union of all relevant bones relevant_bones = set() for b in bonechain_r + bonechain_l: relevant_bones.add(b.name) # check if waist-cancellation bones are in "relevant_bones", print a warning if they are if jp_left_waistcancel in relevant_bones or jp_right_waistcancel in relevant_bones: # TODO LOW: i probably could figure out how to support them but this whole script is useless so idgaf core.MY_PRINT_FUNC( "Warning: waist-cancellation bones found in the model! These are not supported, tool may produce bad results! Attempting to continue..." ) # also need to find initial positions of ik bones (names are known) # build a full parentage-chain for each leg bonechain_ikr = build_bonechain(realbones, jp_righttoe_ik) bonechain_ikl = build_bonechain(realbones, jp_lefttoe_ik) # verify that the ik bones were found, have correct names, and are in the correct positions try: assert bonechain_ikr[-1].name == jp_righttoe_ik assert bonechain_ikr[-2].name == jp_rightfoot_ik assert bonechain_ikl[-1].name == jp_lefttoe_ik assert bonechain_ikl[-2].name == jp_leftfoot_ik except AssertionError: core.MY_PRINT_FUNC( "ERROR: unexpected structure found for foot/toe IK bones, verify semistandard names and structure" ) raise RuntimeError() # verify that the bonechains are symmetric in length try: assert len(bonechain_l) == len(bonechain_r) assert len(bonechain_ikl) == len(bonechain_ikr) except AssertionError: core.MY_PRINT_FUNC( "ERROR: unexpected structure found, model is not left-right symmetric" ) raise RuntimeError() # determine how many levels of parentage, this value "t" should hold the first level where they are no longer shared t = 0 while bonechain_l[t].name == bonechain_ikl[t].name: t += 1 # back off one level lowest_shared_parent = t - 1 # now i am completely done with the bones CSV, all the relevant info has been distilled down to: # !!! bonechain_r, bonechain_l, bonechain_ikr, bonechain_ikl, relevant_bones core.MY_PRINT_FUNC("...identified " + str(len(bonechain_l)) + " bones per leg-chain, " + str(len(relevant_bones)) + " relevant bones total") core.MY_PRINT_FUNC("...identified " + str(len(bonechain_ikl)) + " bones per IK leg-chain") ################################################################################### # prompt VMD file name core.MY_PRINT_FUNC("Please enter name of VMD dance input file:") input_filename_vmd = core.MY_FILEPROMPT_FUNC(".vmd") nicelist_in = vmdlib.read_vmd(input_filename_vmd, moreinfo=moreinfo) # check if this VMD uses IK or not, print a warning if it does any_ik_on = False for ikdispframe in nicelist_in.ikdispframes: for ik_bone in ikdispframe.ikbones: if ik_bone.enable is True: any_ik_on = True break if any_ik_on: core.MY_PRINT_FUNC( "Warning: the input VMD already has IK enabled, there is no point in running this script. Attempting to continue..." ) # reduce down to only the boneframes for the relevant bones # also build a list of each framenumber with a frame for a bone we care about relevant_framenums = set() boneframe_list = [] for boneframe in nicelist_in.boneframes: if boneframe.name in relevant_bones: boneframe_list.append(boneframe) relevant_framenums.add(boneframe.f) # sort the boneframes by frame number boneframe_list.sort(key=lambda x: x.f) # make the relevant framenumbers also an ascending list relevant_framenums = sorted(list(relevant_framenums)) boneframe_dict = dict() # now restructure the data from a list to a dictionary, keyed by bone name. also discard excess data when i do for b in boneframe_list: if b.name not in boneframe_dict: boneframe_dict[b.name] = [] # only storing the frame#(1) + position(234) + rotation values(567) saveme = [b.f, *b.pos, *b.rot] boneframe_dict[b.name].append(saveme) core.MY_PRINT_FUNC( "...running interpolation to rectangularize the frames...") has_warned = False # now fill in the blanks by using interpolation, if needed for key, bone in boneframe_dict.items(): # for each bone, # start a list of frames generated by interpolation interpframe_list = [] i = 0 j = 0 while j < len(relevant_framenums): # for each frame it should have, if i == len(bone): # if i is beyond end of bone, then copy the values from the last frame and use as a new frame newframe = [relevant_framenums[j]] + bone[-1][1:7] interpframe_list.append(newframe) j += 1 elif bone[i][0] == relevant_framenums[j]: # does it have it? i += 1 j += 1 else: # TODO LOW: i could modify this to include my interpolation curve math now that I understand it, but i dont care if not has_warned: core.MY_PRINT_FUNC( "Warning: interpolation is needed but interpolation curves are not fully tested! Assuming linear interpolation..." ) has_warned = True # if there is a mismatch then the target framenum is less than the boneframe framenum # build a frame that has frame# + position(123) + rotation values(456) newframe = [relevant_framenums[j]] # if target is less than the current boneframe, interp between here and prev boneframe for p in range(1, 4): # interpolate for each position offset newframe.append( core.linear_map(bone[i][0], bone[i][p], bone[i - 1][0], bone[i - 1][p], relevant_framenums[j])) # rotation interpolation must happen in the quaternion-space quat1 = core.euler_to_quaternion(bone[i - 1][4:7]) quat2 = core.euler_to_quaternion(bone[i][4:7]) # desired frame is relevant_framenums[j] = d # available frames are bone[i-1][0] = s and bone[i][0] = e # percentage = (d - s) / (e - s) percentage = (relevant_framenums[j] - bone[i - 1][0]) / (bone[i][0] - bone[i - 1][0]) quat_slerp = core.my_slerp(quat1, quat2, percentage) euler_slerp = core.quaternion_to_euler(quat_slerp) newframe += euler_slerp interpframe_list.append(newframe) j += 1 bone += interpframe_list bone.sort(key=core.get1st) # the dictionary should be fully filled out and rectangular now for bone in boneframe_dict: assert len(boneframe_dict[bone]) == len(relevant_framenums) # now i am completely done reading the VMD file and parsing its data! everything has been distilled down to: # relevant_framenums, boneframe_dict ################################################################################### # begin the actual calculations core.MY_PRINT_FUNC("...beginning forward kinematics computation for " + str(len(relevant_framenums)) + " frames...") # output array ikframe_list = [] # have list of bones, parentage, initial pos # have list of frames # now i "run the dance" and build the ik frames # for each relevant frame, for I in range(len(relevant_framenums)): # for each side, for (thisik, this_chain) in zip([bonechain_ikr, bonechain_ikl], [bonechain_r, bonechain_l]): # for each bone in this_chain (ordered, start with root!), for J in range(len(this_chain)): # reset the current to be the inital position again this_chain[J].reset() # for each bone in this_chain (ordered, start with toe! do children before parents!) # also, don't read/use root! because the IK are also children of root, they inherit the same root transformations # count backwards from end to lowest_shared_parent, not including lowest_shared_parent for J in range(len(this_chain) - 1, lowest_shared_parent, -1): # get bone J within this_chain, translate to name name = this_chain[J].name # get bone [name] at index I: position & rotation try: xpos, ypos, zpos, xrot, yrot, zrot = boneframe_dict[name][ I][1:7] except KeyError: continue # apply position offset to self & children # also resets the currposition when changing frames for K in range(J, len(this_chain)): # set this_chain[K].current456 = current456 + position this_chain[K].xcurr += xpos this_chain[K].ycurr += ypos this_chain[K].zcurr += zpos # apply rotation offset to all children, but not self _origin = [ this_chain[J].xcurr, this_chain[J].ycurr, this_chain[J].zcurr ] _angle = [xrot, yrot, zrot] _angle_quat = core.euler_to_quaternion(_angle) for K in range(J, len(this_chain)): # set this_chain[K].current456 = current rotated around this_chain[J].current456 _point = [ this_chain[K].xcurr, this_chain[K].ycurr, this_chain[K].zcurr ] _newpoint = rotate3d(_origin, _angle_quat, _point) (this_chain[K].xcurr, this_chain[K].ycurr, this_chain[K].zcurr) = _newpoint # also rotate the angle of this bone curr_angle_euler = [ this_chain[K].xrot, this_chain[K].yrot, this_chain[K].zrot ] curr_angle_quat = core.euler_to_quaternion( curr_angle_euler) new_angle_quat = core.hamilton_product( _angle_quat, curr_angle_quat) new_angle_euler = core.quaternion_to_euler(new_angle_quat) (this_chain[K].xrot, this_chain[K].yrot, this_chain[K].zrot) = new_angle_euler pass pass # now i have cascaded this frame's pose data down the this_chain # grab foot/toe (-2 and -1) current position and calculate IK offset from that # first, foot: # footikend - footikinit = footikoffset xfoot = this_chain[-2].xcurr - thisik[-2].xinit yfoot = this_chain[-2].ycurr - thisik[-2].yinit zfoot = this_chain[-2].zcurr - thisik[-2].zinit # save as boneframe to be ultimately formatted for VMD: # need bonename = (known) # need frame# = relevantframe#s[I] # position = calculated # rotation = 0 # phys = not disabled # interp = default (20/107) # # then, foot-angle: just copy the angle that the foot has if STORE_IK_AS_FOOT_ONLY: ikframe = [ thisik[-2].name, relevant_framenums[I], xfoot, yfoot, zfoot, this_chain[-2].xrot, this_chain[-2].yrot, this_chain[-2].zrot, False ] else: ikframe = [ thisik[-2].name, relevant_framenums[I], xfoot, yfoot, zfoot, 0.0, 0.0, 0.0, False ] ikframe += [20] * 8 ikframe += [107] * 8 # append the freshly-built frame ikframe_list.append(ikframe) if not STORE_IK_AS_FOOT_ONLY: # then, toe: # toeikend - toeikinit - footikoffset = toeikoffset xtoe = this_chain[-1].xcurr - thisik[-1].xinit - xfoot ytoe = this_chain[-1].ycurr - thisik[-1].yinit - yfoot ztoe = this_chain[-1].zcurr - thisik[-1].zinit - zfoot ikframe = [ thisik[-1].name, relevant_framenums[I], xtoe, ytoe, ztoe, 0.0, 0.0, 0.0, False ] ikframe += [20] * 8 ikframe += [107] * 8 # append the freshly-built frame ikframe_list.append(ikframe) # now done with a timeframe for all bones on both sides # print progress updates core.print_progress_oneline(I / len(relevant_framenums)) core.MY_PRINT_FUNC( "...done with forward kinematics computation, now writing output...") if INCLUDE_IK_ENABLE_FRAME: # create a single ikdispframe that enables the ik bones at frame 0 ikbones = [ vmdstruct.VmdIkbone(name=jp_rightfoot_ik, enable=True), vmdstruct.VmdIkbone(name=jp_righttoe_ik, enable=True), vmdstruct.VmdIkbone(name=jp_leftfoot_ik, enable=True), vmdstruct.VmdIkbone(name=jp_lefttoe_ik, enable=True) ] ikdispframe_list = [ vmdstruct.VmdIkdispFrame(f=0, disp=True, ikbones=ikbones) ] else: ikdispframe_list = [] core.MY_PRINT_FUNC( "Warning: IK following will NOT be enabled when this VMD is loaded, you will need enable it manually!" ) # convert old-style bonelist ikframe_list to new object format ikframe_list = [ vmdstruct.VmdBoneFrame(name=r[0], f=r[1], pos=r[2:5], rot=r[5:8], phys_off=r[8], interp=r[9:]) for r in ikframe_list ] # build actual VMD object nicelist_out = vmdstruct.Vmd( vmdstruct.VmdHeader(2, "SEMISTANDARD-IK-BONES--------"), ikframe_list, # bone [], # morph [], # cam [], # light [], # shadow ikdispframe_list # ikdisp ) # write out output_filename_vmd = "%s_ik_from_%s.vmd" % \ (input_filename_vmd[0:-4], core.get_clean_basename(input_filename_pmx)) output_filename_vmd = core.get_unused_file_name(output_filename_vmd) vmdlib.write_vmd(output_filename_vmd, nicelist_out, moreinfo=moreinfo) core.MY_PRINT_FUNC("Done!") return None