示例#1
0
def test_spec_set(tmpdir, client):
    gdf_test = cudf.DataFrame({
        "ad_id": [1, 2, 2, 6, 6, 8, 3, 3],
        "source_id": [2, 4, 4, 7, 5, 2, 5, 2],
        "platform": [1, 2, np.nan, 2, 1, 3, 3, 1],
        "cont": [1, 2, np.nan, 2, 1, 3, 3, 1],
        "clicked": [1, 0, 1, 0, 0, 1, 1, 0],
    })

    p = nvt.Workflow(
        cat_names=["ad_id", "source_id", "platform"],
        cont_names=["cont"],
        label_name=["clicked"],
        client=client,
    )
    p.add_feature(ops.FillMissing())
    p.add_feature(ops.Normalize())
    p.add_feature(ops.Categorify())
    p.add_feature(
        ops.TargetEncoding(
            cat_groups=["ad_id", "source_id", "platform"],
            cont_target="clicked",
            kfold=5,
            fold_seed=42,
            p_smooth=20,
        ))

    p.apply(nvt.Dataset(gdf_test), record_stats=True)
    assert p.stats
示例#2
0
def test_dask_normalize(client, tmpdir, datasets, engine):

    paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0])
    df1 = cudf.read_parquet(paths[0])[mycols_pq]
    df2 = cudf.read_parquet(paths[1])[mycols_pq]
    df0 = cudf.concat([df1, df2], axis=0)

    cat_names = ["name-cat", "name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    normalize = ops.Normalize()
    conts = cont_names >> ops.FillMissing() >> normalize
    workflow = Workflow(conts + cat_names + label_name, client=client)

    dataset = Dataset(paths, engine)
    result = workflow.fit_transform(dataset).to_ddf().compute()

    # Make sure we collected accurate statistics
    means = df0[cont_names].mean()
    stds = df0[cont_names].std()
    for name in cont_names:
        assert math.isclose(means[name], normalize.means[name], rel_tol=1e-3)
        assert math.isclose(stds[name], normalize.stds[name], rel_tol=1e-3)

    # New (normalized) means should all be close to zero
    new_means = result[cont_names].mean()
    for name in cont_names:
        assert new_means[name] < 1e-3
示例#3
0
def test_s3_dataset(s3, paths, engine, df):
    # create a mocked out bucket here
    bucket = "testbucket"
    s3.create_bucket(Bucket=bucket)

    s3_paths = []
    for path in paths:
        s3_path = f"s3://{bucket}/{path}"
        with fsspec.open(s3_path, "wb") as f:
            f.write(open(path, "rb").read())
        s3_paths.append(s3_path)

    # create a basic s3 dataset
    dataset = nvt.Dataset(s3_paths)

    # make sure the iteration API works
    columns = mycols_pq if engine == "parquet" else mycols_csv
    gdf = cudf.concat(list(dataset.to_iter()))[columns]
    assert_eq(gdf.reset_index(drop=True), df.reset_index(drop=True))

    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    processor = nvt.Workflow(cat_names=cat_names, cont_names=cont_names, label_name=label_name)

    processor.add_feature([ops.FillMissing(), ops.Clip(min_value=0), ops.LogOp()])
    processor.add_preprocess(ops.Normalize())
    processor.add_preprocess(ops.Categorify(cat_cache="host"))
    processor.finalize()

    processor.update_stats(dataset)
def test_concatenate_dataframe(tmpdir, output_model):
    # we were seeing an issue in the rossmann workflow where we dropped certain columns,
    # https://github.com/NVIDIA/NVTabular/issues/961
    df = _make_df({
        "cat": ["aaaa", "bbbb", "cccc", "aaaa", "bbbb", "aaaa"],
        "cont": [0.0, 1.0, 2.0, 3.0, 4.0, 5],
    })
    # this bug only happened with a dataframe representation: force this by using a lambda
    cats = ["cat"] >> ops.LambdaOp(lambda col: _hash_series(col) % 1000)
    conts = ["cont"] >> ops.Normalize() >> ops.FillMissing() >> ops.LogOp()

    dataset = Dataset(df)
    workflow = nvt.Workflow(cats + conts).fit_schema(dataset.infer_schema())

    if output_model == "pytorch":
        model_info = {
            "cat": {
                "columns": ["cat"],
                "dtype": "int32"
            },
            "cont": {
                "columns": ["cont"],
                "dtype": "float32"
            },
        }
    else:
        model_info = None

    _verify_workflow_on_tritonserver(tmpdir, workflow, df,
                                     "test_concatenate_dataframe",
                                     output_model, model_info)
def test_error_handling(tmpdir):
    df = _make_df({"x": np.arange(10), "y": np.arange(10)})

    def custom_transform(col):
        if len(col) == 2:
            raise ValueError("Lets cause some problems")
        return col

    features = ["x", "y"
                ] >> ops.FillMissing() >> ops.Normalize() >> custom_transform
    workflow = nvt.Workflow(features)
    workflow.fit(nvt.Dataset(df))

    model_name = "test_error_handling"
    triton.generate_nvtabular_model(workflow,
                                    model_name,
                                    tmpdir + f"/{model_name}",
                                    backend=BACKEND)

    with run_triton_server(tmpdir) as client:
        inputs = triton.convert_df_to_triton_input(["x", "y"], df[:2])
        with pytest.raises(
                tritonclient.utils.InferenceServerException) as exception_info:
            client.infer(model_name, inputs)

        assert "ValueError: Lets cause some problems" in str(
            exception_info.value)
def test_schema_write_read_dataset(tmpdir, dataset, engine):
    cat_names = ["name-cat", "name-string"
                 ] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify(cat_cache="host")
    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(
        min_value=0) >> ops.LogOp >> norms

    workflow = Workflow(cat_features + cont_features + label_name)

    workflow.fit(dataset)
    workflow.transform(dataset).to_parquet(
        tmpdir,
        out_files_per_proc=10,
    )

    schema_path = Path(tmpdir)
    proto_schema = PbTxt_SchemaWriter._read(schema_path / "schema.pbtxt")
    new_dataset = Dataset(glob.glob(str(tmpdir) + "/*.parquet"))
    assert """name: "name-cat"\n    min: 0\n    max: 27\n""" in str(
        proto_schema)
    assert new_dataset.schema == workflow.output_schema
示例#7
0
def test_gpu_workflow(tmpdir, df, dataset, gpu_memory_frac, engine, dump):
    cat_names = ["name-cat", "name-string"
                 ] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    conts = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> norms
    cats = cat_names >> ops.Categorify()
    workflow = nvt.Workflow(conts + cats + label_name)

    workflow.fit(dataset)
    if dump:
        workflow_dir = os.path.join(tmpdir, "workflow")
        workflow.save(workflow_dir)
        workflow = None

        workflow = Workflow.load(workflow_dir)

    def get_norms(tar: cudf.Series):
        gdf = tar.fillna(0)
        gdf = gdf * (gdf >= 0).astype("int")
        return gdf

    assert math.isclose(get_norms(df.x).mean(), norms.means["x"], rel_tol=1e-4)
    assert math.isclose(get_norms(df.y).mean(), norms.means["y"], rel_tol=1e-4)
    assert math.isclose(get_norms(df.x).std(), norms.stds["x"], rel_tol=1e-3)
    assert math.isclose(get_norms(df.y).std(), norms.stds["y"], rel_tol=1e-3)

    # Check that categories match
    if engine == "parquet":
        cats_expected0 = df["name-cat"].unique().values_host
        cats0 = get_cats(workflow, "name-cat")
        # adding the None entry as a string because of move from gpu
        assert cats0.tolist() == [None] + cats_expected0.tolist()
    cats_expected1 = df["name-string"].unique().values_host
    cats1 = get_cats(workflow, "name-string")
    # adding the None entry as a string because of move from gpu
    assert cats1.tolist() == [None] + cats_expected1.tolist()

    # Write to new "shuffled" and "processed" dataset
    workflow.transform(dataset).to_parquet(
        output_path=tmpdir,
        out_files_per_proc=10,
        shuffle=nvt.io.Shuffle.PER_PARTITION)

    dataset_2 = Dataset(glob.glob(str(tmpdir) + "/*.parquet"),
                        part_mem_fraction=gpu_memory_frac)

    df_pp = cudf.concat(list(dataset_2.to_iter()), axis=0)

    if engine == "parquet":
        assert is_integer_dtype(df_pp["name-cat"].dtype)
    assert is_integer_dtype(df_pp["name-string"].dtype)

    num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata(
        str(tmpdir) + "/_metadata")
    assert num_rows == len(df_pp)
示例#8
0
def test_workflow_apply(client, use_client, tmpdir, shuffle, apply_offline):
    out_files_per_proc = 2
    out_path = str(tmpdir.mkdir("processed"))
    path = str(tmpdir.join("simple.parquet"))

    size = 25
    row_group_size = 5

    cont_names = ["cont1", "cont2"]
    cat_names = ["cat1", "cat2"]
    label_name = ["label"]

    df = pd.DataFrame({
        "cont1": np.arange(size, dtype=np.float64),
        "cont2": np.arange(size, dtype=np.float64),
        "cat1": np.arange(size, dtype=np.int32),
        "cat2": np.arange(size, dtype=np.int32),
        "label": np.arange(size, dtype=np.float64),
    })
    df.to_parquet(path, row_group_size=row_group_size, engine="pyarrow")

    dataset = nvt.Dataset(path, engine="parquet", row_groups_per_part=1)

    cat_features = cat_names >> ops.Categorify()
    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(
        min_value=0) >> ops.LogOp

    workflow = Workflow(cat_features + cont_features + label_name,
                        client=client if use_client else None)

    workflow.fit(dataset)

    # Force dtypes
    dict_dtypes = {}
    for col in cont_names:
        dict_dtypes[col] = np.float32
    for col in cat_names:
        dict_dtypes[col] = np.float32
    for col in label_name:
        dict_dtypes[col] = np.int64

    workflow.transform(dataset).to_parquet(
        # apply_offline=apply_offline, Not any more?
        # record_stats=apply_offline, Not any more?
        output_path=out_path,
        shuffle=shuffle,
        out_files_per_proc=out_files_per_proc,
        dtypes=dict_dtypes,
    )

    # Check dtypes
    for filename in glob.glob(os.path.join(out_path, "*.parquet")):
        gdf = cudf.io.read_parquet(filename)
        assert dict(gdf.dtypes) == dict_dtypes
def test_fit_schema_works_when_subtracting_column_names():
    schema = Schema(["x", "y", "id"])

    cont_features = (ColumnSelector(
        ["x", "y"]) >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp
                     >> ops.Normalize() >> ops.Rename(postfix="_renamed"))

    workflow1 = Workflow(cont_features - "y_renamed")
    workflow1.fit_schema(schema)

    assert workflow1.output_schema.column_names == ["x_renamed"]
def test_fit_schema():
    schema = Schema(["x", "y", "id"])

    cont_features = (ColumnSelector(schema.column_names) >> ops.FillMissing()
                     >> ops.Clip(min_value=0) >> ops.LogOp >> ops.Normalize()
                     >> ops.Rename(postfix="_renamed"))

    workflow = Workflow(cont_features)
    workflow.fit_schema(schema)

    assert workflow.output_schema.column_names == [
        "x_renamed", "y_renamed", "id_renamed"
    ]
def test_generate_triton_model(tmpdir, engine, output_model, df):
    tmpdir = "./tmp"
    conts = ["x", "y", "id"] >> ops.FillMissing() >> ops.Normalize()
    cats = ["name-cat", "name-string"] >> ops.Categorify(cat_cache="host")
    workflow = nvt.Workflow(conts + cats)
    workflow.fit(nvt.Dataset(df))
    expected = workflow.transform(nvt.Dataset(df)).to_ddf().compute()

    # save workflow to triton / verify we see some expected output
    if output_model == "pytorch":
        model_info = {
            "name-cat": {
                "columns": ["name-cat"],
                "dtype": "int64"
            },
            "name-string": {
                "columns": ["name-string"],
                "dtype": "int64"
            },
            "id": {
                "columns": ["id"],
                "dtype": "float32"
            },
            "x": {
                "columns": ["x"],
                "dtype": "float32"
            },
            "y": {
                "columns": ["y"],
                "dtype": "float32"
            },
        }
    else:
        model_info = None

    repo = os.path.join(tmpdir, "models")
    triton.generate_nvtabular_model(
        workflow=workflow,
        name="model",
        output_path=repo,
        version=1,
        output_model=output_model,
        output_info=model_info,
    )
    workflow = None

    assert os.path.exists(os.path.join(repo, "config.pbtxt"))

    workflow = nvt.Workflow.load(os.path.join(repo, "1", "workflow"))
    transformed = workflow.transform(nvt.Dataset(df)).to_ddf().compute()
    assert_eq(expected, transformed)
示例#12
0
def test_target_encode(tmpdir, cat_groups, kfold, fold_seed):
    df = cudf.DataFrame({
        "Author": list(string.ascii_uppercase),
        "Engaging-User": list(string.ascii_lowercase),
        "Cost": range(26),
        "Post": [0, 1] * 13,
    })
    df = dask_cudf.from_cudf(df, npartitions=3)

    cat_names = ["Author", "Engaging-User"]
    cont_names = ["Cost"]
    label_name = ["Post"]

    processor = nvt.Workflow(cat_names=cat_names,
                             cont_names=cont_names,
                             label_name=label_name)
    processor.add_feature(
        [ops.FillMissing(),
         ops.Clip(min_value=0),
         ops.LogOp()])
    processor.add_preprocess(
        ops.TargetEncoding(
            cat_groups,
            "Cost",  # cont_target
            out_path=str(tmpdir),
            kfold=kfold,
            out_col="test_name",
            out_dtype="float32",
            fold_seed=fold_seed,
            drop_folds=False,  # Keep folds to validate
        ))
    processor.finalize()
    processor.apply(nvt.Dataset(df), output_format=None)
    df_out = processor.get_ddf().compute(scheduler="synchronous")

    assert "test_name" in df_out.columns
    assert df_out["test_name"].dtype == "float32"

    if kfold > 1:
        # Cat columns are unique.
        # Make sure __fold__ mapping is correct
        if cat_groups == "Author":
            name = "__fold___Author"
            cols = ["__fold__", "Author"]
        else:
            name = "__fold___Author_Engaging-User"
            cols = ["__fold__", "Author", "Engaging-User"]
        check = cudf.io.read_parquet(processor.stats["te_stats"][name])
        check = check[cols].sort_values(cols).reset_index(drop=True)
        df_out_check = df_out[cols].sort_values(cols).reset_index(drop=True)
        assert_eq(check, df_out_check)
示例#13
0
def test_s3_dataset(s3_base, s3so, paths, datasets, engine, df):

    # Copy files to mock s3 bucket
    files = {}
    for i, path in enumerate(paths):
        with open(path, "rb") as f:
            fbytes = f.read()
        fn = path.split(os.path.sep)[-1]
        files[fn] = BytesIO()
        files[fn].write(fbytes)
        files[fn].seek(0)

    if engine == "parquet":
        # Workaround for nvt#539. In order to avoid the
        # bug in Dask's `create_metadata_file`, we need
        # to manually generate a "_metadata" file here.
        # This can be removed after dask#7295 is merged
        # (see https://github.com/dask/dask/pull/7295)
        fn = "_metadata"
        files[fn] = BytesIO()
        meta = create_metadata_file(
            paths,
            engine="pyarrow",
            out_dir=False,
        )
        meta.write_metadata_file(files[fn])
        files[fn].seek(0)

    with s3_context(s3_base=s3_base, bucket=engine, files=files):

        # Create nvt.Dataset from mock s3 paths
        url = f"s3://{engine}" if engine == "parquet" else f"s3://{engine}/*"
        dataset = nvt.Dataset(url, engine=engine, storage_options=s3so)

        # Check that the iteration API works
        columns = mycols_pq if engine == "parquet" else mycols_csv
        gdf = cudf.concat(list(dataset.to_iter()))[columns]
        assert_eq(gdf.reset_index(drop=True), df.reset_index(drop=True))

        cat_names = ["name-cat", "name-string"
                     ] if engine == "parquet" else ["name-string"]
        cont_names = ["x", "y", "id"]
        label_name = ["label"]

        conts = cont_names >> ops.FillMissing() >> ops.Clip(
            min_value=0) >> ops.LogOp()
        cats = cat_names >> ops.Categorify(cat_cache="host")

        processor = nvt.Workflow(conts + cats + label_name)
        processor.fit(dataset)
示例#14
0
def test_target_encode(tmpdir, cat_groups, kfold, fold_seed, cpu):
    df = dispatch._make_df({
        "Author": list(string.ascii_uppercase),
        "Engaging-User": list(string.ascii_lowercase),
        "Cost": range(26),
        "Post": [0, 1] * 13,
    })
    if cpu:
        df = dd.from_pandas(
            df if isinstance(df, pd.DataFrame) else df.to_pandas(),
            npartitions=3)
    else:
        df = dask_cudf.from_cudf(df, npartitions=3)

    cont_names = ["Cost"]
    te_features = cat_groups >> ops.TargetEncoding(
        cont_names,
        out_path=str(tmpdir),
        kfold=kfold,
        out_dtype="float32",
        fold_seed=fold_seed,
        drop_folds=False,  # Keep folds to validate
    )

    cont_features = cont_names >> ops.FillMissing() >> ops.Clip(
        min_value=0) >> ops.LogOp()
    workflow = nvt.Workflow(te_features + cont_features +
                            ["Author", "Engaging-User"])
    df_out = workflow.fit_transform(
        nvt.Dataset(df)).to_ddf().compute(scheduler="synchronous")

    df_lib = dispatch.get_lib()
    if kfold > 1:
        # Cat columns are unique.
        # Make sure __fold__ mapping is correct
        if cat_groups == "Author":
            name = "__fold___Author"
            cols = ["__fold__", "Author"]
        else:
            name = "__fold___Author_Engaging-User"
            cols = ["__fold__", "Author", "Engaging-User"]

        check = df_lib.read_parquet(te_features.op.stats[name])
        check = check[cols].sort_values(cols).reset_index(drop=True)
        df_out_check = df_out[cols].sort_values(cols).reset_index(drop=True)
        assert_eq(check, df_out_check, check_dtype=False)
示例#15
0
def test_chaining_1():
    df = cudf.DataFrame({
        "cont01": np.random.randint(1, 100, 100),
        "cont02": np.random.random(100) * 100,
        "cat01": np.random.randint(0, 10, 100),
        "label": np.random.randint(0, 3, 100),
    })
    df["cont01"][:10] = None

    cont1 = "cont01" >> ops.FillMissing()
    conts = cont1 + "cont02" >> ops.NormalizeMinMax()
    workflow = Workflow(conts + "cat01" + "label")

    result = workflow.fit_transform(Dataset(df)).to_ddf().compute()

    assert result["cont01"].max() <= 1.0
    assert result["cont02"].max() <= 1.0
示例#16
0
def test_grab_additional_input_columns(dataset, engine):
    schema = Schema(["x", "y"])
    node1 = ["x"] >> ops.FillMissing()
    node2 = node1 >> ops.Clip(min_value=0)

    add_node = node2 + ["y"]

    workflow = Workflow(add_node).fit_schema(schema)
    output_df = workflow.transform(dataset).to_ddf().compute()

    assert len(workflow.output_node.input_columns.names) == 2
    assert workflow.output_node.input_columns.names == ["x", "y"]

    assert len(workflow.output_node.output_columns.names) == 2
    assert workflow.output_node.output_columns.names == ["x", "y"]

    assert len(output_df.columns) == 2
    assert output_df.columns.tolist() == ["x", "y"]
示例#17
0
def test_generate_triton_model(tmpdir, engine, df):
    tmpdir = "./tmp"
    conts = ["x", "y", "id"] >> ops.FillMissing() >> ops.Normalize()
    cats = ["name-cat", "name-string"] >> ops.Categorify(cat_cache="host")
    workflow = nvt.Workflow(conts + cats)
    workflow.fit(nvt.Dataset(df))
    expected = workflow.transform(nvt.Dataset(df)).to_ddf().compute()

    # save workflow to triton / verify we see some expected output
    repo = os.path.join(tmpdir, "models")
    triton.generate_nvtabular_model(workflow, "model", repo)
    workflow = None

    assert os.path.exists(os.path.join(repo, "config.pbtxt"))

    workflow = nvt.Workflow.load(os.path.join(repo, "1", "workflow"))
    transformed = workflow.transform(nvt.Dataset(df)).to_ddf().compute()

    assert_eq(expected, transformed)
示例#18
0
def test_dask_normalize(client, tmpdir, datasets, engine):

    paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0])
    df1 = cudf.read_parquet(paths[0])[mycols_pq]
    df2 = cudf.read_parquet(paths[1])[mycols_pq]
    df0 = cudf.concat([df1, df2], axis=0)

    cat_names = ["name-cat", "name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    processor = Workflow(client=client,
                         cat_names=cat_names,
                         cont_names=cont_names,
                         label_name=label_name)
    processor.add_preprocess([ops.FillMissing(), ops.Normalize()])
    processor.finalize()

    dataset = Dataset(paths, engine)
    processor.apply(dataset)
    result = processor.get_ddf().compute()

    # Make sure we collected accurate statistics
    means = df0[cont_names].mean()
    stds = df0[cont_names].std()
    counts = df0[cont_names].count()
    for name in cont_names:
        assert math.isclose(means[name],
                            processor.stats["means"][name],
                            rel_tol=1e-3)
        assert math.isclose(stds[name],
                            processor.stats["stds"][name],
                            rel_tol=1e-3)
        assert math.isclose(counts[name],
                            processor.stats["counts"][name],
                            rel_tol=1e-3)

    # New (normalized) means should all be close to zero
    new_means = result[cont_names].mean()
    for name in cont_names:
        assert new_means[name] < 1e-3
示例#19
0
def test_dask_preproc_cpu(client, tmpdir, datasets, engine, shuffle, cpu):
    paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0])
    if engine == "parquet":
        df1 = cudf.read_parquet(paths[0])[mycols_pq]
        df2 = cudf.read_parquet(paths[1])[mycols_pq]
    elif engine == "csv":
        df1 = cudf.read_csv(paths[0], header=0)[mycols_csv]
        df2 = cudf.read_csv(paths[1], header=0)[mycols_csv]
    else:
        df1 = cudf.read_csv(paths[0], names=allcols_csv)[mycols_csv]
        df2 = cudf.read_csv(paths[1], names=allcols_csv)[mycols_csv]
    df0 = cudf.concat([df1, df2], axis=0)

    if engine in ("parquet", "csv"):
        dataset = Dataset(paths, part_size="1MB", cpu=cpu)
    else:
        dataset = Dataset(paths, names=allcols_csv, part_size="1MB", cpu=cpu)

    # Simple transform (normalize)
    cat_names = ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]
    conts = cont_names >> ops.FillMissing() >> ops.Normalize()
    workflow = Workflow(conts + cat_names + label_name, client=client)
    transformed = workflow.fit_transform(dataset)

    # Write out dataset
    output_path = os.path.join(tmpdir, "processed")
    transformed.to_parquet(output_path=output_path,
                           shuffle=shuffle,
                           out_files_per_proc=4)

    # Check the final result
    df_disk = dd_read_parquet(output_path, engine="pyarrow").compute()
    assert_eq(
        df0.sort_values(["id", "x"])[["name-string", "label"]],
        df_disk.sort_values(["id", "x"])[["name-string", "label"]],
        check_index=False,
    )
示例#20
0
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac,
                             engine, dump, replace):
    cat_names = ["name-cat", "name-string"
                 ] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    cat_features = cat_names >> ops.Categorify()
    if replace:
        cont_features = cont_names >> ops.FillMissing() >> ops.LogOp >> norms
    else:
        fillmissing_logop = (cont_names >> ops.FillMissing() >> ops.LogOp >>
                             ops.Rename(postfix="_FillMissing_1_LogOp_1"))
        cont_features = cont_names + fillmissing_logop >> norms

    workflow = Workflow(cat_features + cont_features + label_name,
                        client=client)

    workflow.fit(dataset)

    if dump:
        workflow_dir = os.path.join(tmpdir, "workflow")
        workflow.save(workflow_dir)
        workflow = None

        workflow = Workflow.load(workflow_dir, client=client)

    def get_norms(tar: cudf.Series):
        ser_median = tar.dropna().quantile(0.5, interpolation="linear")
        gdf = tar.fillna(ser_median)
        gdf = np.log(gdf + 1)
        return gdf

    # Check mean and std - No good right now we have to add all other changes; Clip, Log

    concat_ops = "_FillMissing_1_LogOp_1"
    if replace:
        concat_ops = ""
    assert math.isclose(get_norms(df.x).mean(),
                        norms.means["x" + concat_ops],
                        rel_tol=1e-1)
    assert math.isclose(get_norms(df.y).mean(),
                        norms.means["y" + concat_ops],
                        rel_tol=1e-1)

    assert math.isclose(get_norms(df.x).std(),
                        norms.stds["x" + concat_ops],
                        rel_tol=1e-1)
    assert math.isclose(get_norms(df.y).std(),
                        norms.stds["y" + concat_ops],
                        rel_tol=1e-1)
    # Check that categories match
    if engine == "parquet":
        cats_expected0 = df["name-cat"].unique().values_host
        cats0 = get_cats(workflow, "name-cat")
        # adding the None entry as a string because of move from gpu
        assert cats0.tolist() == [None] + cats_expected0.tolist()
    cats_expected1 = df["name-string"].unique().values_host
    cats1 = get_cats(workflow, "name-string")
    # adding the None entry as a string because of move from gpu
    assert cats1.tolist() == [None] + cats_expected1.tolist()

    # Write to new "shuffled" and "processed" dataset
    workflow.transform(dataset).to_parquet(
        tmpdir,
        out_files_per_proc=10,
        shuffle=nvt.io.Shuffle.PER_PARTITION,
    )

    dataset_2 = Dataset(glob.glob(str(tmpdir) + "/*.parquet"),
                        part_mem_fraction=gpu_memory_frac)

    df_pp = cudf.concat(list(dataset_2.to_iter()), axis=0)

    if engine == "parquet":
        assert is_integer_dtype(df_pp["name-cat"].dtype)
    assert is_integer_dtype(df_pp["name-string"].dtype)

    num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata(
        str(tmpdir) + "/_metadata")
    assert num_rows == len(df_pp)
示例#21
0
def main(args):
    """Multi-GPU Criteo/DLRM Preprocessing Benchmark

    This benchmark is designed to measure the time required to preprocess
    the Criteo (1TB) dataset for Facebook’s DLRM model.  The user must specify
    the path of the raw dataset (using the `--data-path` flag), as well as the
    output directory for all temporary/final data (using the `--out-path` flag)

    Example Usage
    -------------

    python dask-nvtabular-criteo-benchmark.py
                        --data-path /path/to/criteo_parquet --out-path /out/dir/`


    Dataset Requirements (Parquet)
    ------------------------------

    This benchmark is designed with a parquet-formatted dataset in mind.
    While a CSV-formatted dataset can be processed by NVTabular, converting
    to parquet will yield significantly better performance.  To convert your
    dataset, try using the `optimize_criteo.ipynb` notebook (also located
    in `NVTabular/examples/`)

    For a detailed parameter overview see `NVTabular/examples/MultiGPUBench.md`
    """

    # Input
    data_path = args.data_path
    freq_limit = args.freq_limit
    out_files_per_proc = args.out_files_per_proc
    high_card_columns = args.high_cards.split(",")
    dashboard_port = args.dashboard_port
    if args.protocol == "ucx":
        UCX_TLS = os.environ.get("UCX_TLS", "tcp,cuda_copy,cuda_ipc,sockcm")
        os.environ["UCX_TLS"] = UCX_TLS

    # Cleanup output directory
    BASE_DIR = args.out_path
    dask_workdir = os.path.join(BASE_DIR, "workdir")
    output_path = os.path.join(BASE_DIR, "output")
    stats_path = os.path.join(BASE_DIR, "stats")
    if not os.path.isdir(BASE_DIR):
        os.mkdir(BASE_DIR)
    for dir_path in (dask_workdir, output_path, stats_path):
        if os.path.isdir(dir_path):
            shutil.rmtree(dir_path)
        os.mkdir(dir_path)

    # Use Criteo dataset by default (for now)
    cont_names = (args.cont_names.split(",")
                  if args.cont_names else ["I" + str(x) for x in range(1, 14)])
    cat_names = (args.cat_names.split(",")
                 if args.cat_names else ["C" + str(x) for x in range(1, 27)])
    label_name = ["label"]

    # Specify Categorify/GroupbyStatistics options
    tree_width = {}
    cat_cache = {}
    for col in cat_names:
        if col in high_card_columns:
            tree_width[col] = args.tree_width
            cat_cache[col] = args.cat_cache_high
        else:
            tree_width[col] = 1
            cat_cache[col] = args.cat_cache_low

    # Use total device size to calculate args.device_limit_frac
    device_size = device_mem_size(kind="total")
    device_limit = int(args.device_limit_frac * device_size)
    device_pool_size = int(args.device_pool_frac * device_size)
    part_size = int(args.part_mem_frac * device_size)

    # Parse shuffle option
    shuffle = None
    if args.shuffle == "PER_WORKER":
        shuffle = nvt_io.Shuffle.PER_WORKER
    elif args.shuffle == "PER_PARTITION":
        shuffle = nvt_io.Shuffle.PER_PARTITION

    # Check if any device memory is already occupied
    for dev in args.devices.split(","):
        fmem = _pynvml_mem_size(kind="free", index=int(dev))
        used = (device_size - fmem) / 1e9
        if used > 1.0:
            warnings.warn(
                f"BEWARE - {used} GB is already occupied on device {int(dev)}!"
            )

    # Setup LocalCUDACluster
    if args.protocol == "tcp":
        cluster = LocalCUDACluster(
            protocol=args.protocol,
            n_workers=args.n_workers,
            CUDA_VISIBLE_DEVICES=args.devices,
            device_memory_limit=device_limit,
            local_directory=dask_workdir,
            dashboard_address=":" + dashboard_port,
        )
    else:
        cluster = LocalCUDACluster(
            protocol=args.protocol,
            n_workers=args.n_workers,
            CUDA_VISIBLE_DEVICES=args.devices,
            enable_nvlink=True,
            device_memory_limit=device_limit,
            local_directory=dask_workdir,
            dashboard_address=":" + dashboard_port,
        )
    client = Client(cluster)

    # Setup RMM pool
    if args.device_pool_frac > 0.01:
        setup_rmm_pool(client, device_pool_size)

    # Define Dask NVTabular "Workflow"
    processor = Workflow(cat_names=cat_names,
                         cont_names=cont_names,
                         label_name=label_name,
                         client=client)
    if args.normalize:
        processor.add_feature([ops.FillMissing(), ops.Normalize()])
    else:
        processor.add_feature(
            [ops.FillMissing(),
             ops.Clip(min_value=0),
             ops.LogOp()])
    processor.add_preprocess(
        ops.Categorify(
            out_path=stats_path,
            tree_width=tree_width,
            cat_cache=cat_cache,
            freq_threshold=freq_limit,
            search_sorted=not freq_limit,
            on_host=not args.cats_on_device,
        ))
    processor.finalize()

    dataset = Dataset(data_path, "parquet", part_size=part_size)

    # Execute the dask graph
    runtime = time.time()
    if args.profile is not None:
        with performance_report(filename=args.profile):
            processor.apply(
                dataset,
                shuffle=shuffle,
                out_files_per_proc=out_files_per_proc,
                output_path=output_path,
                num_io_threads=args.num_io_threads,
            )
    else:
        processor.apply(
            dataset,
            num_io_threads=args.num_io_threads,
            shuffle=shuffle,
            out_files_per_proc=out_files_per_proc,
            output_path=output_path,
        )
    runtime = time.time() - runtime

    print("\nDask-NVTabular DLRM/Criteo benchmark")
    print("--------------------------------------")
    print(f"partition size     | {part_size}")
    print(f"protocol           | {args.protocol}")
    print(f"device(s)          | {args.devices}")
    print(f"rmm-pool-frac      | {(args.device_pool_frac)}")
    print(f"out-files-per-proc | {args.out_files_per_proc}")
    print(f"num_io_threads     | {args.num_io_threads}")
    print(f"shuffle            | {args.shuffle}")
    print(f"cats-on-device     | {args.cats_on_device}")
    print("======================================")
    print(f"Runtime[s]         | {runtime}")
    print("======================================\n")

    client.close()
示例#22
0
def test_dask_workflow_api_dlrm(
    client,
    tmpdir,
    datasets,
    freq_threshold,
    part_mem_fraction,
    engine,
    cat_cache,
    on_host,
    shuffle,
    cpu,
):
    paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0])
    paths = sorted(paths)
    if engine == "parquet":
        df1 = cudf.read_parquet(paths[0])[mycols_pq]
        df2 = cudf.read_parquet(paths[1])[mycols_pq]
    elif engine == "csv":
        df1 = cudf.read_csv(paths[0], header=0)[mycols_csv]
        df2 = cudf.read_csv(paths[1], header=0)[mycols_csv]
    else:
        df1 = cudf.read_csv(paths[0], names=allcols_csv)[mycols_csv]
        df2 = cudf.read_csv(paths[1], names=allcols_csv)[mycols_csv]
    df0 = cudf.concat([df1, df2], axis=0)
    df0 = df0.to_pandas() if cpu else df0

    if engine == "parquet":
        cat_names = ["name-cat", "name-string"]
    else:
        cat_names = ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    cats = cat_names >> ops.Categorify(freq_threshold=freq_threshold,
                                       out_path=str(tmpdir),
                                       cat_cache=cat_cache,
                                       on_host=on_host)

    conts = cont_names >> ops.FillMissing() >> ops.Clip(
        min_value=0) >> ops.LogOp()

    workflow = Workflow(cats + conts + label_name, client=client)

    if engine in ("parquet", "csv"):
        dataset = Dataset(paths, cpu=cpu, part_mem_fraction=part_mem_fraction)
    else:
        dataset = Dataset(paths,
                          cpu=cpu,
                          names=allcols_csv,
                          part_mem_fraction=part_mem_fraction)

    output_path = os.path.join(tmpdir, "processed")

    transformed = workflow.fit_transform(dataset)
    transformed.to_parquet(output_path=output_path,
                           shuffle=shuffle,
                           out_files_per_proc=1)

    result = transformed.to_ddf().compute()
    assert len(df0) == len(result)
    assert result["x"].min() == 0.0
    assert result["x"].isna().sum() == 0
    assert result["y"].min() == 0.0
    assert result["y"].isna().sum() == 0

    # Check categories.  Need to sort first to make sure we are comparing
    # "apples to apples"
    expect = df0.sort_values(["label", "x", "y",
                              "id"]).reset_index(drop=True).reset_index()
    got = result.sort_values(["label", "x", "y",
                              "id"]).reset_index(drop=True).reset_index()
    dfm = expect.merge(got, on="index",
                       how="inner")[["name-string_x", "name-string_y"]]
    dfm_gb = dfm.groupby(["name-string_x", "name-string_y"]).agg({
        "name-string_x":
        "count",
        "name-string_y":
        "count"
    })
    if freq_threshold:
        dfm_gb = dfm_gb[dfm_gb["name-string_x"] >= freq_threshold]
    assert_eq(dfm_gb["name-string_x"],
              dfm_gb["name-string_y"],
              check_names=False)

    # Read back from disk
    if cpu:
        df_disk = dd_read_parquet(output_path).compute()
    else:
        df_disk = dask_cudf.read_parquet(output_path).compute()

    # we don't have a deterministic ordering here, especially when using
    # a dask client with multiple workers - so we need to sort the values here
    columns = ["label", "x", "y", "id"] + cat_names
    got = result.sort_values(columns).reset_index(drop=True)
    expect = df_disk.sort_values(columns).reset_index(drop=True)
    assert_eq(got, expect)
示例#23
0
def test_cpu_workflow(tmpdir, df, dataset, cpu, engine, dump):
    # Make sure we are in cpu formats
    if cudf and isinstance(df, cudf.DataFrame):
        df = df.to_pandas()

    if cpu:
        dataset.to_cpu()

    cat_names = ["name-cat", "name-string"] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    norms = ops.Normalize()
    conts = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> norms
    cats = cat_names >> ops.Categorify()
    workflow = nvt.Workflow(conts + cats + label_name)

    workflow.fit(dataset)
    if dump:
        workflow_dir = os.path.join(tmpdir, "workflow")
        workflow.save(workflow_dir)
        workflow = None

        workflow = Workflow.load(workflow_dir)

    def get_norms(tar: pd.Series):
        df = tar.fillna(0)
        df = df * (df >= 0).astype("int")
        return df

    assert math.isclose(get_norms(df.x).mean(), norms.means["x"], rel_tol=1e-4)
    assert math.isclose(get_norms(df.y).mean(), norms.means["y"], rel_tol=1e-4)
    assert math.isclose(get_norms(df.x).std(), norms.stds["x"], rel_tol=1e-3)
    assert math.isclose(get_norms(df.y).std(), norms.stds["y"], rel_tol=1e-3)

    # Check that categories match
    if engine == "parquet":
        cats_expected0 = df["name-cat"].unique()
        cats0 = get_cats(workflow, "name-cat", cpu=True)
        # adding the None entry as a string because of move from gpu
        assert cats0.tolist() == [None] + sorted(cats_expected0.tolist())
    cats_expected1 = df["name-string"].unique()
    cats1 = get_cats(workflow, "name-string", cpu=True)
    # adding the None entry as a string because of move from gpu
    assert cats1.tolist() == [None] + sorted(cats_expected1.tolist())

    # Write to new "shuffled" and "processed" dataset
    workflow.transform(dataset).to_parquet(
        output_path=tmpdir, out_files_per_proc=10, shuffle=nvt.io.Shuffle.PER_PARTITION
    )

    dataset_2 = Dataset(glob.glob(str(tmpdir) + "/*.parquet"), cpu=cpu)

    df_pp = pd.concat(list(dataset_2.to_iter()), axis=0)

    if engine == "parquet":
        assert is_integer_dtype(df_pp["name-cat"].dtype)
    assert is_integer_dtype(df_pp["name-string"].dtype)

    metadata = pq.read_metadata(str(tmpdir) + "/_metadata")
    assert metadata.num_rows == len(df_pp)
示例#24
0
def test_tf_gpu_dl(tmpdir, datasets, batch_size, gpu_memory_frac, engine):
    paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0])
    cont_names = ["x", "y", "id"]
    cat_names = ["name-string"]
    label_name = ["label"]
    if engine == "parquet":
        cat_names.append("name-cat")

    columns = cont_names + cat_names

    processor = nvt.Workflow(
        cat_names=cat_names,
        cont_names=cont_names,
        label_name=label_name,
        to_cpu=True,
    )
    processor.add_feature([ops.FillMissing()])
    processor.add_preprocess(ops.Normalize())
    processor.add_preprocess(ops.Categorify())
    processor.finalize()

    data_itr = KerasSequenceDataset(
        paths,
        columns=columns,
        batch_size=batch_size,
        buffer_size=gpu_memory_frac,
        label_name=label_name[0],
        engine=engine,
        shuffle=False,
    )
    processor.update_stats(data_itr.nvt_dataset, record_stats=True)
    data_itr.map(processor)

    rows = 0
    for idx in range(len(data_itr)):
        X, y = next(data_itr)

        # first elements to check epoch-to-epoch consistency
        if idx == 0:
            X0, y0 = X, y

        # check that we have at most batch_size elements
        num_samples = y.shape[0]
        assert num_samples <= batch_size

        # check that all the features in X have the
        # appropriate length and that the set of
        # their names is exactly the set of names in
        # `columns`
        these_cols = columns.copy()
        for column, x in X.items():
            try:
                these_cols.remove(column)
            except ValueError:
                raise AssertionError
            assert x.shape[0] == num_samples
        assert len(these_cols) == 0

        rows += num_samples

    # check start of next epoch to ensure consistency
    X, y = next(data_itr)
    assert (y.numpy() == y0.numpy()).all()
    for column, x in X.items():
        x0 = X0.pop(column)
        assert (x.numpy() == x0.numpy()).all()
    assert len(X0) == 0

    # accounts for incomplete batches at the end of chunks
    # that dont necesssarily have the full batch_size
    assert (idx + 1) * batch_size >= rows
    assert rows == (60 * 24 * 3 + 1)
示例#25
0
def test_gpu_dl(tmpdir, datasets, batch_size, gpu_memory_frac, engine):
    paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0])

    if engine == "parquet":
        df1 = cudf.read_parquet(paths[0])[mycols_pq]
        df2 = cudf.read_parquet(paths[1])[mycols_pq]
    else:
        df1 = cudf.read_csv(paths[0], header=False,
                            names=allcols_csv)[mycols_csv]
        df2 = cudf.read_csv(paths[1], header=False,
                            names=allcols_csv)[mycols_csv]
    df = cudf.concat([df1, df2], axis=0)
    df["id"] = df["id"].astype("int64")

    if engine == "parquet":
        cat_names = ["name-cat", "name-string"]
        columns = mycols_pq
    else:
        cat_names = ["name-string"]
        columns = mycols_csv
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    processor = nvt.Workflow(
        cat_names=cat_names,
        cont_names=cont_names,
        label_name=label_name,
        to_cpu=True,
    )

    processor.add_feature([ops.FillMissing()])
    processor.add_preprocess(ops.Normalize())
    processor.add_preprocess(ops.Categorify())

    data_itr = nvtabular.io.GPUDatasetIterator(
        paths,
        columns=columns,
        use_row_groups=True,
        gpu_memory_frac=gpu_memory_frac,
        names=allcols_csv,
    )

    output_train = os.path.join(tmpdir, "train/")
    os.mkdir(output_train)

    processor.apply(
        data_itr,
        apply_offline=True,
        record_stats=True,
        shuffle=True,
        output_path=output_train,
        num_out_files=2,
    )

    tar_paths = [
        os.path.join(output_train, x) for x in os.listdir(output_train)
        if x.endswith("parquet")
    ]

    data_itr = nvt.torch_dataloader.TorchTensorBatchDatasetItr(
        tar_paths[0],
        engine="parquet",
        sub_batch_size=batch_size,
        gpu_memory_frac=gpu_memory_frac,
        cats=cat_names,
        conts=cont_names,
        labels=["label"],
        names=mycols_csv,
        sep="\t",
    )

    num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata(
        tar_paths[0])
    rows = 0
    for idx, chunk in enumerate(data_itr):
        rows += len(chunk[0])
        del chunk

    # accounts for incomplete batches at the end of chunks
    # that dont necesssarily have the full batch_size
    assert (idx + 1) * batch_size >= rows
    assert rows == num_rows
    if os.path.exists(output_train):
        shutil.rmtree(output_train)
示例#26
0
def test_gpu_preproc(tmpdir, datasets, dump, gpu_memory_frac, engine,
                     preprocessing):
    paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0])

    if engine == "parquet":
        df1 = cudf.read_parquet(paths[0])[mycols_pq]
        df2 = cudf.read_parquet(paths[1])[mycols_pq]
    else:
        df1 = cudf.read_csv(paths[0], header=False,
                            names=allcols_csv)[mycols_csv]
        df2 = cudf.read_csv(paths[1], header=False,
                            names=allcols_csv)[mycols_csv]
    df = cudf.concat([df1, df2], axis=0)
    df["id"] = df["id"].astype("int64")

    if engine == "parquet":
        cat_names = ["name-cat", "name-string"]
        columns = mycols_pq
    else:
        cat_names = ["name-string"]
        columns = mycols_csv
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    processor = nvt.Workflow(
        cat_names=cat_names,
        cont_names=cont_names,
        label_name=label_name,
        to_cpu=True,
    )

    processor.add_feature(
        [ops.FillMissing(),
         ops.LogOp(preprocessing=preprocessing)])
    processor.add_preprocess(ops.Normalize())
    processor.add_preprocess(ops.Categorify())
    processor.finalize()

    data_itr = nvtabular.io.GPUDatasetIterator(
        paths,
        columns=columns,
        use_row_groups=True,
        gpu_memory_frac=gpu_memory_frac,
        names=allcols_csv,
    )

    processor.update_stats(data_itr)

    if dump:
        config_file = tmpdir + "/temp.yaml"
        processor.save_stats(config_file)
        processor.clear_stats()
        processor.load_stats(config_file)

    def get_norms(tar: cudf.Series):
        ser_median = tar.dropna().quantile(0.5, interpolation="linear")
        gdf = tar.fillna(ser_median)
        gdf = np.log(gdf + 1)
        return gdf

    # Check mean and std - No good right now we have to add all other changes; Zerofill, Log
    x_col = "x" if preprocessing else "x_LogOp"
    y_col = "y" if preprocessing else "y_LogOp"
    assert math.isclose(
        get_norms(df.x).mean(),
        processor.stats["means"][x_col],
        rel_tol=1e-2,
    )
    assert math.isclose(
        get_norms(df.y).mean(),
        processor.stats["means"][y_col],
        rel_tol=1e-2,
    )
    assert math.isclose(
        get_norms(df.x).std(),
        processor.stats["stds"][x_col],
        rel_tol=1e-2,
    )
    assert math.isclose(
        get_norms(df.y).std(),
        processor.stats["stds"][y_col],
        rel_tol=1e-2,
    )

    # Check median (TODO: Improve the accuracy)
    x_median = df.x.dropna().quantile(0.5, interpolation="linear")
    y_median = df.y.dropna().quantile(0.5, interpolation="linear")
    id_median = df.id.dropna().quantile(0.5, interpolation="linear")
    assert math.isclose(x_median, processor.stats["medians"]["x"], rel_tol=1e1)
    assert math.isclose(y_median, processor.stats["medians"]["y"], rel_tol=1e1)
    assert math.isclose(id_median,
                        processor.stats["medians"]["id"],
                        rel_tol=1e1)

    # Check that categories match
    if engine == "parquet":
        cats_expected0 = df["name-cat"].unique().values_to_string()
        cats0 = processor.stats["encoders"]["name-cat"].get_cats(
        ).values_to_string()
        assert cats0 == ["None"] + cats_expected0
    cats_expected1 = df["name-string"].unique().values_to_string()
    cats1 = processor.stats["encoders"]["name-string"].get_cats(
    ).values_to_string()
    print(cats1)
    assert cats1 == ["None"] + cats_expected1

    #     Write to new "shuffled" and "processed" dataset
    processor.write_to_dataset(tmpdir,
                               data_itr,
                               nfiles=10,
                               shuffle=True,
                               apply_ops=True)

    processor.create_final_cols()

    # if preprocessing
    if not preprocessing:
        for col in cont_names:
            assert f"{col}_LogOp" in processor.columns_ctx["final"]["cols"][
                "continuous"]

    dlc = nvtabular.torch_dataloader.DLCollator(preproc=processor,
                                                apply_ops=False)
    data_files = [
        nvtabular.torch_dataloader.FileItrDataset(
            x,
            use_row_groups=True,
            gpu_memory_frac=gpu_memory_frac,
            names=allcols_csv,
        ) for x in glob.glob(str(tmpdir) + "/ds_part.*.parquet")
    ]

    data_itr = torch.utils.data.ChainDataset(data_files)
    dl = nvtabular.torch_dataloader.DLDataLoader(data_itr,
                                                 collate_fn=dlc.gdf_col,
                                                 pin_memory=False,
                                                 num_workers=0)

    len_df_pp = 0
    for chunk in dl:
        len_df_pp += len(chunk[0][0])

    data_itr = nvtabular.io.GPUDatasetIterator(
        glob.glob(str(tmpdir) + "/ds_part.*.parquet"),
        use_row_groups=True,
        gpu_memory_frac=gpu_memory_frac,
        names=allcols_csv,
    )

    x = processor.ds_to_tensors(data_itr, apply_ops=False)

    num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata(
        str(tmpdir) + "/_metadata")
    assert len(x[0]) == len_df_pp

    itr_ds = nvtabular.torch_dataloader.TensorItrDataset([x[0], x[1], x[2]],
                                                         batch_size=512000)
    count_tens_itr = 0
    for data_gd in itr_ds:
        count_tens_itr += len(data_gd[1])
        assert data_gd[0][0].shape[1] > 0
        assert data_gd[0][1].shape[1] > 0

    assert len_df_pp == count_tens_itr
    if os.path.exists(processor.ds_exports):
        shutil.rmtree(processor.ds_exports)
示例#27
0
def test_hugectr(tmpdir, client, df, dataset, output_format, engine,
                 op_columns, num_io_threads, use_client):
    client = client if use_client else None

    cat_names = ["name-cat", "name-string"
                 ] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y"]
    label_names = ["label"]

    # set variables
    nfiles = 10
    ext = ""
    outdir = tmpdir + "/hugectr"
    os.mkdir(outdir)

    # process data
    processor = nvt.Workflow(client=client,
                             cat_names=cat_names,
                             cont_names=cont_names,
                             label_name=label_names)
    processor.add_feature([
        ops.FillMissing(columns=op_columns),
        ops.Clip(min_value=0, columns=op_columns),
        ops.LogOp(),
    ])
    processor.add_preprocess(ops.Normalize())
    processor.add_preprocess(ops.Categorify())
    processor.finalize()

    # apply the workflow and write out the dataset
    processor.apply(
        dataset,
        output_path=outdir,
        out_files_per_proc=nfiles,
        output_format=output_format,
        shuffle=None,
        num_io_threads=num_io_threads,
    )

    # Check for _file_list.txt
    assert os.path.isfile(outdir + "/_file_list.txt")

    # Check for _metadata.json
    assert os.path.isfile(outdir + "/_metadata.json")

    # Check contents of _metadata.json
    data = {}
    col_summary = {}
    with open(outdir + "/_metadata.json", "r") as fil:
        for k, v in json.load(fil).items():
            data[k] = v
    assert "cats" in data
    assert "conts" in data
    assert "labels" in data
    assert "file_stats" in data
    assert len(data["file_stats"]) == nfiles if not client else nfiles * len(
        client.cluster.workers)
    for cdata in data["cats"] + data["conts"] + data["labels"]:
        col_summary[cdata["index"]] = cdata["col_name"]

    # Check that data files exist
    ext = ""
    if output_format == "parquet":
        ext = "parquet"
    elif output_format == "hugectr":
        ext = "data"

    data_files = [
        os.path.join(outdir, filename) for filename in os.listdir(outdir)
        if filename.endswith(ext)
    ]

    # Make sure the columns in "_metadata.json" make sense
    if output_format == "parquet":
        df_check = cudf.read_parquet(os.path.join(outdir, data_files[0]))
        for i, name in enumerate(df_check.columns):
            if i in col_summary:
                assert col_summary[i] == name
示例#28
0
    def processing(
        self,
        X_pd,
        y_names=[],
        encode_categor_type=None,
        #'categorify', 'onehotencoding',
        outliers_detection_technique=None,
        #'iqr_proximity_rule', 'gaussian_approximation','quantiles'
        fill_with_value=None,
        #'extreme_values', 'zeros','mean-median'
        targetencoding=False,
        file_path=None,
    ):
        X = dd.from_pandas(X_pd, npartitions=self.n_gpus)
        X = X.replace(np.nan, None)
        try:
            self.time_columns
        except AttributeError:
            try:
                self.initialize_types(
                    X,
                    n_unique_val_th=n_unique_val_th_,
                    categor_columns_keep=categor_columns_keep_,
                    numer_columns_keep=numer_columns_keep_)
            except NameError:
                self.initialize_types(X)

        workflow = nvt.Workflow(cat_names=self.categor_columns,
                                cont_names=self.numer_columns,
                                label_name=y_names,
                                client=self.client)
        # Operators: https://nvidia.github.io/NVTabular/main/api/ops/index.html
        # Categorify https://nvidia.github.io/NVTabular/main/api/ops/categorify.html
        if encode_categor_type == 'categorify':
            if len(self.categor_columns) != 0:
                workflow.add_preprocess(
                    ops.Categorify(columns=self.categor_columns,
                                   out_path='./'))

        if encode_categor_type == 'onehotencoding':
            #OneHotEncoder().get_feature_names(input_features=<list of features encoded>) does not work
            #lengths=True - chunk sizes can be computed
            for column in self.categor_columns:
                #X[column] = X[column].astype(str)
                X_cat_encoded = OneHotEncoder().fit_transform(
                    X[column].to_dask_array(lengths=True).reshape(-1, 1))
                uvs = X[column].unique().compute().values
                X = X.drop([column], axis=1)
                X_cat_encoded = dd.from_array(
                    X_cat_encoded.compute().todense())
                X_cat_encoded.columns = [
                    column + '_{}'.format(uv) for uv in uvs
                ]
                X = dd.concat([X, X_cat_encoded], axis=1)
                X = X.repartition(npartitions=2)
            for column in X.columns:
                if any(str(column)[-4:] == t
                       for t in ['_nan', 'None']):  # What else?
                    X = X.drop([column], axis=1)

            self.initialize_types(X)
            print('Retyping:', self.initialize_types(X))
            # Reinitialize workflow
            workflow = nvt.Workflow(cat_names=self.categor_columns,
                                    cont_names=self.numer_columns,
                                    label_name=y_names,
                                    client=self.client)

        # OutlDetect https://nvidia.github.io/NVTabular/main/api/ops/clip.html
        if (len(self.numer_columns) != 0) and (outliers_detection_technique !=
                                               None):
            lower, upper = self.outldetect(outliers_detection_technique,
                                           X[self.numer_columns])
            for i in range(len(self.numer_columns)):
                logging.info(
                    f'column: {self.numer_columns[i]}, lower: {lower[i]}, upper: {upper[i]}'
                )
                print(
                    f'column: {self.numer_columns[i]}, lower: {lower[i]}, upper: {upper[i]}'
                )
                workflow.add_preprocess(
                    ops.Clip(min_value=lower[i],
                             max_value=upper[i],
                             columns=[self.numer_columns[i]]))

        # FillMissing https://nvidia.github.io/NVTabular/main/api/ops/fillmissing.html
        if fill_with_value == 'zeros':
            workflow.add_preprocess(
                ops.FillMissing(fill_val=0,
                                columns=self.categor_columns +
                                self.numer_columns))

        if fill_with_value == 'extreme_values':
            extrim_values = {}
            if len(self.numer_columns) != 0:
                extrim_values.update(
                    self.extrvalsdetect(X[self.numer_columns],
                                        'numer_columns'))

            if len(self.categor_columns) != 0:
                extrim_values.update(
                    self.extrvalsdetect(X[self.categor_columns],
                                        'categor_columns'))
            logging.info(f'extrim_values: {extrim_values}')

            output = open('extrim_values', 'wb')
            pickle.dump(extrim_values, output)
            output.close()

            for fill_val, column in zip(list(extrim_values.values()),
                                        list(extrim_values.keys())):
                workflow.add_preprocess(
                    ops.FillMissing(fill_val=fill_val, columns=[column]))

        if fill_with_value == 'mean-median':
            if len(self.categor_columns) != 0:
                workflow.add_preprocess(
                    ops.FillMedian(columns=self.categor_columns,
                                   preprocessing=True,
                                   replace=True))
            if len(self.numer_columns) != 0:
                means = list(
                    dd.from_pandas(
                        X[self.numer_columns],
                        npartitions=self.n_gpus).mean().compute().values)
                for fill_val, column in zip(means, self.numer_columns):
                    workflow.add_preprocess(
                        ops.FillMissing(fill_val=fill_val, columns=[column]))

        if targetencoding:
            #https://nvidia.github.io/NVTabular/main/api/ops/targetencoding.html
            if len(self.y_names) != 0:
                if len(self.cat_groups) == 0:
                    print(
                        '\n Target encoding will be applied to all categorical columns'
                    )
                    workflow.add_preprocess(
                        ops.TargetEncoding(cat_groups=self.categor_columns,
                                           cont_target=self.y_names))
                else:
                    workflow.add_preprocess(
                        ops.TargetEncoding(cat_groups=self.cat_groups,
                                           cont_target=self.y_names))
        #-----------------------------------------------------------------------------------------
        workflow.finalize()
        dataset = nvt.Dataset(X)

        tmp_output_path = "./parquet_data_tmp"
        workflow.apply(
            dataset,
            output_format="parquet",
            output_path=tmp_output_path,
            shuffle=Shuffle.PER_WORKER,  # Shuffle algorithm
            out_files_per_proc=1,  # Number of output files per worker
        )
        files = glob.glob(tmp_output_path + "/*.parquet")
        X_final = cudf.read_parquet(files[0])
        for i in range(1, len(files)):
            X_final = X_final.append(cudf.read_parquet(files[i]))
        # Delete temporary files
        shutil.rmtree(tmp_output_path, ignore_errors=True)
        #         if len(self.rest_col_names) != 0:
        #             print(1)
        #             X_final = pd.concat([X_final.to_pandas(), X_pd[self.rest_col_names]], axis=1)
        if file_path is not None:
            X_final.to_csv(file_path, index=False)
        return X_final
示例#29
0
def test_dask_workflow_api_dlrm(
    client, tmpdir, datasets, freq_threshold, part_mem_fraction, engine, cat_cache, on_host, shuffle
):
    paths = glob.glob(str(datasets[engine]) + "/*." + engine.split("-")[0])
    if engine == "parquet":
        df1 = cudf.read_parquet(paths[0])[mycols_pq]
        df2 = cudf.read_parquet(paths[1])[mycols_pq]
    elif engine == "csv":
        df1 = cudf.read_csv(paths[0], header=0)[mycols_csv]
        df2 = cudf.read_csv(paths[1], header=0)[mycols_csv]
    else:
        df1 = cudf.read_csv(paths[0], names=allcols_csv)[mycols_csv]
        df2 = cudf.read_csv(paths[1], names=allcols_csv)[mycols_csv]
    df0 = cudf.concat([df1, df2], axis=0)

    if engine == "parquet":
        cat_names = ["name-cat", "name-string"]
    else:
        cat_names = ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    cats = cat_names >> ops.Categorify(
        freq_threshold=freq_threshold, out_path=str(tmpdir), cat_cache=cat_cache, on_host=on_host
    )

    conts = cont_names >> ops.FillMissing() >> ops.Clip(min_value=0) >> ops.LogOp()

    workflow = Workflow(cats + conts + label_name, client=client)

    if engine in ("parquet", "csv"):
        dataset = Dataset(paths, part_mem_fraction=part_mem_fraction)
    else:
        dataset = Dataset(paths, names=allcols_csv, part_mem_fraction=part_mem_fraction)

    output_path = os.path.join(tmpdir, "processed")

    transformed = workflow.fit_transform(dataset)
    transformed.to_parquet(output_path=output_path, shuffle=shuffle)

    # Can still access the final ddf if we didn't shuffle
    if not shuffle:
        result = transformed.to_ddf().compute()
        assert len(df0) == len(result)
        assert result["x"].min() == 0.0
        assert result["x"].isna().sum() == 0
        assert result["y"].min() == 0.0

        assert result["y"].isna().sum() == 0

        # Check category counts
        cat_expect = df0.groupby("name-string").agg({"name-string": "count"}).reset_index(drop=True)
        cat_result = (
            result.groupby("name-string").agg({"name-string": "count"}).reset_index(drop=True)
        )
        if freq_threshold:
            cat_expect = cat_expect[cat_expect["name-string"] >= freq_threshold]
            # Note that we may need to skip the 0th element in result (null mapping)
            assert_eq(
                cat_expect,
                cat_result.iloc[1:] if len(cat_result) > len(cat_expect) else cat_result,
                check_index=False,
            )
        else:
            assert_eq(cat_expect, cat_result)

        # Read back from disk
        df_disk = dask_cudf.read_parquet(output_path, index=False).compute()
        for col in df_disk:
            assert_eq(result[col], df_disk[col])

    else:
        df_disk = dask_cudf.read_parquet(output_path, index=False).compute()
        assert len(df0) == len(df_disk)
示例#30
0
def test_gpu_workflow_config(tmpdir, client, df, dataset, gpu_memory_frac,
                             engine, dump, replace):
    cat_names = ["name-cat", "name-string"
                 ] if engine == "parquet" else ["name-string"]
    cont_names = ["x", "y", "id"]
    label_name = ["label"]

    config = nvt.workflow.get_new_config()
    # add operators with dependencies
    config["FE"]["continuous"] = [[
        ops.FillMissing(replace=replace),
        ops.LogOp(replace=replace)
    ]]
    config["PP"]["continuous"] = [[
        ops.LogOp(replace=replace),
        ops.Normalize()
    ]]
    config["PP"]["categorical"] = [ops.Categorify()]

    processor = nvt.Workflow(
        cat_names=cat_names,
        cont_names=cont_names,
        label_name=label_name,
        config=config,
        client=client,
    )

    processor.update_stats(dataset)

    if dump:
        config_file = tmpdir + "/temp.yaml"
        processor.save_stats(config_file)
        processor.clear_stats()
        processor.load_stats(config_file)

    def get_norms(tar: cudf.Series):
        ser_median = tar.dropna().quantile(0.5, interpolation="linear")
        gdf = tar.fillna(ser_median)
        gdf = np.log(gdf + 1)
        return gdf

    # Check mean and std - No good right now we have to add all other changes; Zerofill, Log

    concat_ops = "_FillMissing_LogOp"
    if replace:
        concat_ops = ""
    assert math.isclose(get_norms(df.x).mean(),
                        processor.stats["means"]["x" + concat_ops],
                        rel_tol=1e-1)
    assert math.isclose(get_norms(df.y).mean(),
                        processor.stats["means"]["y" + concat_ops],
                        rel_tol=1e-1)

    assert math.isclose(get_norms(df.x).std(),
                        processor.stats["stds"]["x" + concat_ops],
                        rel_tol=1e-1)
    assert math.isclose(get_norms(df.y).std(),
                        processor.stats["stds"]["y" + concat_ops],
                        rel_tol=1e-1)
    # Check that categories match
    if engine == "parquet":
        cats_expected0 = df["name-cat"].unique().values_host
        cats0 = get_cats(processor, "name-cat")
        # adding the None entry as a string because of move from gpu
        assert cats0.tolist() == [None] + cats_expected0.tolist()
    cats_expected1 = df["name-string"].unique().values_host
    cats1 = get_cats(processor, "name-string")
    # adding the None entry as a string because of move from gpu
    assert cats1.tolist() == [None] + cats_expected1.tolist()

    # Write to new "shuffled" and "processed" dataset
    processor.write_to_dataset(tmpdir,
                               dataset,
                               out_files_per_proc=10,
                               shuffle="partial",
                               apply_ops=True)

    dataset_2 = Dataset(glob.glob(str(tmpdir) + "/*.parquet"),
                        part_mem_fraction=gpu_memory_frac)

    df_pp = cudf.concat(list(dataset_2.to_iter()), axis=0)

    if engine == "parquet":
        assert is_integer_dtype(df_pp["name-cat"].dtype)
    assert is_integer_dtype(df_pp["name-string"].dtype)

    num_rows, num_row_groups, col_names = cudf.io.read_parquet_metadata(
        str(tmpdir) + "/_metadata")
    assert num_rows == len(df_pp)