示例#1
0
文件: run.py 项目: suk1yak1/nyaggle
def run_experiment(model_params: Dict[str, Any],
                   X_train: pd.DataFrame,
                   y: pd.Series,
                   X_test: Optional[pd.DataFrame] = None,
                   logging_directory: str = 'output/{time}',
                   if_exists: str = 'error',
                   eval_func: Optional[Callable] = None,
                   algorithm_type: Union[str, Type[BaseEstimator]] = 'lgbm',
                   fit_params: Optional[Union[Dict[str, Any],
                                              Callable]] = None,
                   cv: Optional[Union[int, Iterable,
                                      BaseCrossValidator]] = None,
                   groups: Optional[pd.Series] = None,
                   categorical_feature: Optional[List[str]] = None,
                   sample_submission: Optional[pd.DataFrame] = None,
                   submission_filename: Optional[str] = None,
                   type_of_target: str = 'auto',
                   feature_list: Optional[List[Union[int, str]]] = None,
                   feature_directory: Optional[str] = None,
                   inherit_experiment: Optional[Experiment] = None,
                   with_auto_hpo: bool = False,
                   with_auto_prep: bool = False,
                   with_mlflow: bool = False):
    """
    Evaluate metrics by cross-validation and stores result
    (log, oof prediction, test prediction, feature importance plot and submission file)
    under the directory specified.

    One of the following estimators are used (automatically dispatched by ``type_of_target(y)`` and ``gbdt_type``).

    * LGBMClassifier
    * LGBMRegressor
    * CatBoostClassifier
    * CatBoostRegressor

    The output files are laid out as follows:

    .. code-block:: none

      <logging_directory>/
          log.txt                  <== Logging file
          importance.png           <== Feature importance plot generated by nyaggle.util.plot_importance
          oof_prediction.npy       <== Out of fold prediction in numpy array format
          test_prediction.npy      <== Test prediction in numpy array format
          submission.csv           <== Submission csv file
          metrics.json             <== Metrics
          params.json              <== Parameters
          models/
              fold1                <== The trained model in fold 1
              ...

    Args:
        model_params:
            Parameters passed to the constructor of the classifier/regressor object (i.e. LGBMRegressor).
        X_train:
            Training data. Categorical feature should be casted to pandas categorical type or encoded to integer.
        y:
            Target
        X_test:
            Test data (Optional). If specified, prediction on the test data is performed using ensemble of models.
        logging_directory:
            Path to directory where output of experiment is stored.
        if_exists:
            How to behave if the logging directory already exists.

            - error: Raise a ValueError.
            - replace: Delete logging directory before logging.
            - append: Append to exisitng experiment.
            - rename: Rename current directory by adding "_1", "_2"... prefix
        fit_params:
            Parameters passed to the fit method of the estimator. If dict is passed, the same parameter except
            eval_set passed for each fold. If callable is passed,
            returning value of ``fit_params(fold_id, train_index, test_index)`` will be used for each fold.
        eval_func:
            Function used for logging and calculation of returning scores.
            This parameter isn't passed to GBDT, so you should set objective and eval_metric separately if needed.
            If ``eval_func`` is None, ``roc_auc_score`` or ``mean_squared_error`` is used by default.
        gbdt_type:
            Type of gradient boosting library used. "lgbm" (lightgbm) or "cat" (catboost)
        cv:
            int, cross-validation generator or an iterable which determines the cross-validation splitting strategy.

            - None, to use the default ``KFold(5, random_state=0, shuffle=True)``,
            - integer, to specify the number of folds in a ``(Stratified)KFold``,
            - CV splitter (the instance of ``BaseCrossValidator``),
            - An iterable yielding (train, test) splits as arrays of indices.
        groups:
            Group labels for the samples. Only used in conjunction with a “Group” cv instance (e.g., ``GroupKFold``).
        sample_submission:
            A sample dataframe alined with test data (Usually in Kaggle, it is available as sample_submission.csv).
            The submission file will be created with the same schema as this dataframe.
        submission_filename:
            The name of submission file will be created under logging directory. If ``None``, the basename of the logging
            directory will be used as a filename.
        categorical_feature:
            List of categorical column names. If ``None``, categorical columns are automatically determined by dtype.
        type_of_target:
            The type of target variable. If ``auto``, type is inferred by ``sklearn.utils.multiclass.type_of_target``.
            Otherwise, ``binary``, ``continuous``, or ``multiclass`` are supported.
        feature_list:
            The list of feature ids saved through nyaggle.feature_store module.
        feature_directory:
            The location of features stored. Only used if feature_list is not empty.
        inherit_experiment:
            An experiment object which is used to log results. if not ``None``, all logs in this function are treated
            as a part of this experiment.
        with_auto_prep:
            If True, the input datasets will be copied and automatic preprocessing will be performed on them.
            For example, if ``gbdt_type = 'cat'``, all missing values in categorical features will be filled.
        with_auto_hpo:
            If True, model parameters will be automatically updated using optuna (only available in lightgbm).
        with_mlflow:
            If True, `mlflow tracking <https://www.mlflow.org/docs/latest/tracking.html>`_ is used.
            One instance of ``nyaggle.experiment.Experiment`` corresponds to one run in mlflow.
            Note that all output
            mlflow's directory (``mlruns`` by default).
    :return:
        Namedtuple with following members

        * oof_prediction:
            numpy array, shape (len(X_train),) Predicted value on Out-of-Fold validation data.
        * test_prediction:
            numpy array, shape (len(X_test),) Predicted value on test data. ``None`` if X_test is ``None``
        * metrics:
            list of float, shape(nfolds+1) ``scores[i]`` denotes validation score in i-th fold.
            ``scores[-1]`` is overall score.
        * models:
            list of objects, shape(nfolds) Trained models for each folds.
        * importance:
            list of pd.DataFrame, feature importance for each fold (type="gain").
        * time:
            Training time in seconds.
        * submit_df:
            The dataframe saved as submission.csv
    """
    start_time = time.time()
    cv = check_cv(cv, y)

    if feature_list:
        X = pd.concat([X_train, X_test]) if X_test is not None else X_train
        X.reset_index(drop=True, inplace=True)
        X = load_features(X, feature_list, directory=feature_directory)
        ntrain = len(X_train)
        X_train, X_test = X.iloc[:ntrain, :], X.iloc[ntrain:, :].reset_index(
            drop=True)

    _check_input(X_train, y, X_test)

    if categorical_feature is None:
        categorical_feature = [
            c for c in X_train.columns
            if X_train[c].dtype.name in ['object', 'category']
        ]

    if type_of_target == 'auto':
        type_of_target = multiclass.type_of_target(y)
    model_type, eval_func, cat_param_name = _dispatch_models(
        algorithm_type, type_of_target, eval_func)

    if with_auto_prep:
        assert algorithm_type in (
            'cat', 'xgb', 'lgbm'), "with_auto_prep is only supported for gbdt"
        X_train, X_test = autoprep_gbdt(algorithm_type, X_train, X_test,
                                        categorical_feature)

    logging_directory = logging_directory.format(
        time=datetime.now().strftime('%Y%m%d_%H%M%S'))

    if inherit_experiment is not None:
        experiment = ExpeimentProxy(inherit_experiment)
    else:
        experiment = Experiment(logging_directory,
                                if_exists=if_exists,
                                with_mlflow=with_mlflow)

    with experiment as exp:
        exp.log('Algorithm: {}'.format(algorithm_type))
        exp.log('Experiment: {}'.format(exp.logging_directory))
        exp.log('Params: {}'.format(model_params))
        exp.log('Features: {}'.format(list(X_train.columns)))
        exp.log_param('algorithm_type', algorithm_type)
        exp.log_param('num_features', X_train.shape[1])
        if callable(fit_params):
            exp.log_param('fit_params', str(fit_params))
        else:
            exp.log_dict('fit_params', fit_params)
        exp.log_dict('model_params', model_params)
        if feature_list is not None:
            exp.log_param('features', feature_list)

        if with_auto_hpo:
            assert algorithm_type == 'lgbm', 'auto-tuning is only supported for LightGBM'
            model_params = find_best_lgbm_parameter(
                model_params,
                X_train,
                y,
                cv=cv,
                groups=groups,
                type_of_target=type_of_target)
            exp.log_param('model_params_tuned', model_params)

        exp.log('Categorical: {}'.format(categorical_feature))

        models = [model_type(**model_params) for _ in range(cv.get_n_splits())]

        if fit_params is None:
            fit_params = {}
        if cat_param_name is not None and not callable(
                fit_params) and cat_param_name not in fit_params:
            fit_params[cat_param_name] = categorical_feature

        if isinstance(fit_params, Dict):
            exp.log_params(fit_params)

        result = cross_validate(models,
                                X_train=X_train,
                                y=y,
                                X_test=X_test,
                                cv=cv,
                                groups=groups,
                                logger=exp.get_logger(),
                                eval_func=eval_func,
                                fit_params=fit_params,
                                type_of_target=type_of_target)

        # save oof
        exp.log_numpy('oof_prediction', result.oof_prediction)
        exp.log_numpy('test_prediction', result.test_prediction)

        for i in range(cv.get_n_splits()):
            exp.log_metric('Fold {}'.format(i + 1), result.scores[i])
        exp.log_metric('Overall', result.scores[-1])

        # save importance plot
        if result.importance:
            importance = pd.concat(result.importance)
            plot_file_path = os.path.join(exp.logging_directory,
                                          'importance.png')
            plot_importance(importance, plot_file_path)
            exp.log_artifact(plot_file_path)

        # save trained model
        for i, model in enumerate(models):
            _save_model(model, exp.logging_directory, i + 1, exp)

        # save submission.csv
        submit_df = None
        if X_test is not None:
            submit_df = make_submission_df(result.test_prediction,
                                           sample_submission, y)
            exp.log_dataframe(
                submission_filename or os.path.basename(exp.logging_directory),
                submit_df, 'csv')

        elapsed_time = time.time() - start_time

        return ExperimentResult(result.oof_prediction, result.test_prediction,
                                result.scores, models, result.importance,
                                elapsed_time, submit_df)
示例#2
0
def adversarial_validate(X_train: pd.DataFrame,
                         X_test: pd.DataFrame,
                         importance_type: str = 'gain',
                         estimator: Optional[BaseEstimator] = None,
                         cat_cols = None,
                         cv = None) -> ADVResult:
    """
    Perform adversarial validation between X_train and X_test.

    Args:
        X_train:
            Training data
        X_test:
            Test data
        importance_type:
            The type of feature importance calculated.
        estimator:
            The custom estimator. If None, LGBMClassifier is automatically used.
        cv:
            Cross validation split. If ``None``, the first fold out of 5 fold is used as validation.
    Returns:
        Namedtuple with following members

        * auc:
            float, ROC AUC score of adversarial validation.
        * importance:
            pandas DataFrame, feature importance of adversarial model (order by importance)

    Example:
        >>> from sklearn.model_selection import train_test_split
        >>> from nyaggle.testing import make_regression_df
        >>> from nyaggle.validation import adversarial_validate

        >>> X, y = make_regression_df(n_samples=8)
        >>> X_train, X_test, y_train, y_test = train_test_split(X, y)
        >>> auc, importance = cross_validate(X_train, X_test)
        >>>
        >>> print(auc)
        0.51078231
        >>> importance.head()
        feature importance
        col_1   231.5827204
        col_5   207.1837266
        col_7   188.6920685
        col_4   174.5668498
        col_9   170.6438643
    """
    concat = pd.concat([X_train, X_test]).copy().reset_index(drop=True)
    y = np.array([1]*len(X_train) + [0]*len(X_test))

    if estimator is None:
        requires_lightgbm()
        from lightgbm import LGBMClassifier
        estimator = LGBMClassifier(n_estimators=10000, objective='binary', importance_type=importance_type,
                                   random_state=0)
    else:
        assert is_instance(estimator, ('lightgbm.sklearn.LGBMModel', 'catboost.core.CatBoost')), \
            'Only CatBoostClassifier or LGBMClassifier is allowed'

    if cv is None:
        cv = Take(1, KFold(5, shuffle=True, random_state=0))

    fit_params = {'verbose': -1}
    if cat_cols:
        fit_params['categorical_feature'] = cat_cols

    result = cross_validate(estimator, concat, y, None, cv=cv,
                            eval_func=roc_auc_score, fit_params=fit_params, importance_type=importance_type)

    importance = pd.concat(result.importance)
    importance = importance.groupby('feature')['importance'].mean().reset_index()
    importance.sort_values(by='importance', ascending=False, inplace=True)
    importance.reset_index(drop=True, inplace=True)

    return ADVResult(result.scores[-1], importance)