def get_inelastic_response(fb, asig, extra_time=0.0, xi=0.05, analysis_dt=0.001):
    """
    Run seismic analysis of a nonlinear FrameBuilding

    Parameters
    ----------
    fb: sfsimodels.Frame2DBuilding object
    asig: eqsig.AccSignal object
    extra_time
    xi
    analysis_dt

    Returns
    -------

    """
    osi = o3.OpenSeesInstance(ndm=2)

    q_floor = 10000.  # kPa
    trib_width = fb.floor_length
    trib_mass_per_length = q_floor * trib_width / 9.8

    # Establish nodes and set mass based on trib area
    # Nodes named as: C<column-number>-S<storey-number>, first column starts at C1-S0 = ground level left
    nd = OrderedDict()
    col_xs = np.cumsum(fb.bay_lengths)
    col_xs = np.insert(col_xs, 0, 0)
    n_cols = len(col_xs)
    sto_ys = fb.heights
    sto_ys = np.insert(sto_ys, 0, 0)
    for cc in range(1, n_cols + 1):
        for ss in range(fb.n_storeys + 1):
            nd[f"C{cc}-S{ss}"] = o3.node.Node(osi, col_xs[cc - 1], sto_ys[ss])

            if ss != 0:
                if cc == 1:
                    node_mass = trib_mass_per_length * fb.bay_lengths[0] / 2
                elif cc == n_cols:
                    node_mass = trib_mass_per_length * fb.bay_lengths[-1] / 2
                else:
                    node_mass = trib_mass_per_length * (fb.bay_lengths[cc - 2] + fb.bay_lengths[cc - 1] / 2)
                o3.set_node_mass(osi, nd[f"C{cc}-S{ss}"], node_mass, 0., 0.)

    # Set all nodes on a storey to have the same displacement
    for ss in range(0, fb.n_storeys + 1):
        for cc in range(1, n_cols + 1):
            o3.set_equal_dof(osi, nd[f"C1-S{ss}"], nd[f"C{cc}-S{ss}"], o3.cc.X)

    # Fix all base nodes
    for cc in range(1, n_cols + 1):
        o3.Fix3DOF(osi, nd[f"C{cc}-S0"], o3.cc.FIXED, o3.cc.FIXED, o3.cc.FIXED)

    # Coordinate transformation
    transf = o3.geom_transf.Linear2D(osi, [])

    l_hinge = fb.bay_lengths[0] * 0.1

    # Define material
    e_conc = 30.0e6
    i_beams = 0.4 * fb.beam_widths * fb.beam_depths ** 3 / 12
    i_columns = 0.5 * fb.column_widths * fb.column_depths ** 3 / 12
    a_beams = fb.beam_widths * fb.beam_depths
    a_columns = fb.column_widths * fb.column_depths
    ei_beams = e_conc * i_beams
    ei_columns = e_conc * i_columns
    eps_yield = 300.0e6 / 200e9
    phi_y_col = calc_yield_curvature(fb.column_depths, eps_yield)
    phi_y_beam = calc_yield_curvature(fb.beam_depths, eps_yield) * 10  # TODO: re-evaluate

    # Define beams and columns
    # Columns named as: C<column-number>-S<storey-number>, first column starts at C1-S0 = ground floor left
    # Beams named as: B<bay-number>-S<storey-number>, first beam starts at B1-S1 = first storey left (foundation at S0)

    md = OrderedDict()  # material dict
    sd = OrderedDict()  # section dict
    ed = OrderedDict()  # element dict

    for ss in range(fb.n_storeys):

        # set columns
        for cc in range(1, fb.n_cols + 1):
            lp_i = 0.4
            lp_j = 0.4  # plastic hinge length
            ele_str = f"C{cc}-S{ss}S{ss+1}"

            top_sect = o3.section.Elastic2D(osi, e_conc, a_columns[ss][cc - 1], i_columns[ss][cc - 1])
            bot_sect = o3.section.Elastic2D(osi, e_conc, a_columns[ss][cc - 1], i_columns[ss][cc - 1])
            centre_sect = o3.section.Elastic2D(osi, e_conc, a_columns[ss][cc - 1], i_columns[ss][cc - 1])
            sd[ele_str + "T"] = top_sect
            sd[ele_str + "B"] = bot_sect
            sd[ele_str + "C"] = centre_sect

            integ = o3.beam_integration.HingeMidpoint(osi, bot_sect, lp_i, top_sect, lp_j, centre_sect)

            bot_node = nd[f"C{cc}-S{ss}"]
            top_node = nd[f"C{cc}-S{ss+1}"]
            ed[ele_str] = o3.element.ForceBeamColumn(osi, [bot_node, top_node], transf, integ)

        # Set beams
        for bb in range(1, fb.n_bays + 1):
            lp_i = 0.5
            lp_j = 0.5
            ele_str = f"C{bb-1}C{bb}-S{ss}"

            mat = o3.uniaxial_material.ElasticBilin(osi, ei_beams[ss][bb - 1], 0.05 * ei_beams[ss][bb - 1], phi_y_beam[ss][bb - 1])
            md[ele_str] = mat
            left_sect = o3.section.Uniaxial(osi, mat, quantity=o3.cc.M_Z)
            right_sect = o3.section.Uniaxial(osi, mat, quantity=o3.cc.M_Z)
            centre_sect = o3.section.Elastic2D(osi, e_conc, a_beams[ss][bb - 1], i_beams[ss][bb - 1])
            integ = o3.beam_integration.HingeMidpoint(osi, left_sect, lp_i, right_sect, lp_j, centre_sect)

            left_node = nd[f"C{bb}-S{ss+1}"]
            right_node = nd[f"C{bb+1}-S{ss+1}"]
            ed[ele_str] = o3.element.ForceBeamColumn(osi, [left_node, right_node], transf, integ)

    # Define the dynamic analysis
    a_series = o3.time_series.Path(osi, dt=asig.dt, values=-1 * asig.values)  # should be negative
    o3.pattern.UniformExcitation(osi, dir=o3.cc.X, accel_series=a_series)

    # set damping based on first eigen mode
    angular_freq_sqrd = o3.get_eigen(osi, solver='fullGenLapack', n=1)
    if hasattr(angular_freq_sqrd, '__len__'):
        angular_freq = angular_freq_sqrd[0] ** 0.5
    else:
        angular_freq = angular_freq_sqrd ** 0.5
    if isinstance(angular_freq, complex):
        raise ValueError("Angular frequency is complex, issue with stiffness or mass")
    beta_k = 2 * xi / angular_freq
    o3.rayleigh.Rayleigh(osi, alpha_m=0.0, beta_k=beta_k, beta_k_init=0.0, beta_k_comm=0.0)

    # Run the dynamic analysis

    o3.wipe_analysis(osi)

    o3.algorithm.Newton(osi)
    o3.system.SparseGeneral(osi)
    o3.numberer.RCM(osi)
    o3.constraints.Transformation(osi)
    o3.integrator.Newmark(osi, 0.5, 0.25)
    o3.analysis.Transient(osi)

    tol = 1.0e-4
    iter = 4
    o3.test_check.EnergyIncr(osi, tol, iter, 0, 2)
    analysis_time = (len(asig.values) - 1) * asig.dt + extra_time
    outputs = {
        "time": [],
        "rel_disp": [],
        "rel_accel": [],
        "rel_vel": [],
        "force": [],
        "ele_mom": [],
        "ele_curve": [],
    }
    print("Analysis starting")
    while o3.get_time(osi) < analysis_time:
        curr_time = opy.getTime()
        o3.analyze(osi, 1, analysis_dt)
        outputs["time"].append(curr_time)
        outputs["rel_disp"].append(o3.get_node_disp(osi, nd["C%i-S%i" % (1, fb.n_storeys)], o3.cc.X))
        outputs["rel_vel"].append(o3.get_node_vel(osi, nd["C%i-S%i" % (1, fb.n_storeys)], o3.cc.X))
        outputs["rel_accel"].append(o3.get_node_accel(osi, nd["C%i-S%i" % (1, fb.n_storeys)], o3.cc.X))
        # outputs['ele_mom'].append(opy.eleResponse('-ele', [ed['B%i-S%i' % (1, 0)], 'basicForce']))
        o3.gen_reactions(osi)
        react = 0
        for cc in range(1, fb.n_cols):
            react += -o3.get_node_reaction(osi, nd["C%i-S%i" % (cc, 0)], o3.cc.X)
        outputs["force"].append(react)  # Should be negative since diff node
    o3.wipe(osi)
    for item in outputs:
        outputs[item] = np.array(outputs[item])

    return outputs
示例#2
0
def get_inelastic_response(mass,
                           k_spring,
                           f_yield,
                           motion,
                           dt,
                           xi=0.05,
                           r_post=0.0):
    """
    Run seismic analysis of a nonlinear SDOF

    :param mass: SDOF mass
    :param k_spring: spring stiffness
    :param f_yield: yield strength
    :param motion: list, acceleration values
    :param dt: float, time step of acceleration values
    :param xi: damping ratio
    :param r_post: post-yield stiffness
    :return:
    """
    osi = o3.OpenSeesInstance(ndm=2)

    # Establish nodes
    bot_node = o3.node.Node(osi, 0, 0)
    top_node = o3.node.Node(osi, 0, 0)

    # Fix bottom node
    o3.Fix3DOF(osi, top_node, o3.cc.FREE, o3.cc.FIXED, o3.cc.FIXED)
    o3.Fix3DOF(osi, bot_node, o3.cc.FIXED, o3.cc.FIXED, o3.cc.FIXED)
    # Set out-of-plane DOFs to be slaved
    o3.EqualDOF(osi, top_node, bot_node, [o3.cc.Y, o3.cc.DOF2D_ROTZ])

    # nodal mass (weight / g):
    o3.Mass(osi, top_node, mass, 0., 0.)

    # Define material
    bilinear_mat = o3.uniaxial_material.Steel01(osi,
                                                fy=f_yield,
                                                e0=k_spring,
                                                b=r_post)

    # Assign zero length element, # Note: pass actual node and material objects into element
    o3.element.ZeroLength(osi, [bot_node, top_node],
                          mats=[bilinear_mat],
                          dirs=[o3.cc.DOF2D_X],
                          r_flag=1)

    # Define the dynamic analysis
    values = list(-1 * motion)  # should be negative
    acc_series = o3.time_series.Path(osi, dt, values)
    o3.pattern.UniformExcitation(osi, o3.cc.X, accel_series=acc_series)

    # set damping based on first eigen mode
    angular_freq2 = o3.get_eigen(osi, solver='fullGenLapack', n=1)
    if hasattr(angular_freq2, '__len__'):
        angular_freq2 = angular_freq2[0]
    angular_freq = angular_freq2**0.5
    beta_k = 2 * xi / angular_freq
    o3.rayleigh.Rayleigh(osi,
                         alpha_m=0.0,
                         beta_k=beta_k,
                         beta_k_init=0.0,
                         beta_k_comm=0.0)

    # Run the dynamic analysis

    o3.wipe_analysis(osi)
    newmark_gamma = 0.5
    newmark_beta = 0.25

    o3.algorithm.Newton(osi)
    o3.constraints.Transformation(osi)
    o3.algorithm.Newton(osi)
    o3.numberer.RCM(osi)
    o3.system.SparseGeneral(osi)
    o3.integrator.Newmark(osi, newmark_gamma, newmark_beta)
    o3.analysis.Transient(osi)

    o3.test_check.EnergyIncr(osi, tol=1.0e-10, max_iter=10)
    analysis_time = (len(values) - 1) * dt
    analysis_dt = 0.001
    outputs = {"time": [], "rel_disp": [], "rel_accel": [], "force": []}
    o3.record(osi)
    curr_time = o3.get_time(osi)
    while curr_time < analysis_time:
        outputs["time"].append(curr_time)
        outputs["rel_disp"].append(o3.get_node_disp(osi, top_node, o3.cc.X))
        outputs["rel_accel"].append(o3.get_node_accel(osi, top_node, o3.cc.X))
        o3.gen_reactions(osi)
        outputs["force"].append(-o3.get_node_reaction(
            osi, bot_node, o3.cc.X))  # Negative since diff node
        o3.analyze(osi, 1, analysis_dt)
        curr_time = o3.get_time(osi)
    o3.wipe(osi)
    for item in outputs:
        outputs[item] = np.array(outputs[item])

    return outputs
def run_analysis(asig, period, xi, f_yield, etype):
    # Load a ground motion

    # Define inelastic SDOF
    mass = 1.0

    r_post = 0.0

    # Initialise OpenSees instance
    osi = o3.OpenSeesInstance(ndm=2, state=0)

    # Establish nodes
    bot_node = o3.node.Node(osi, 0, 0)
    top_node = o3.node.Node(osi, 0, 0)

    # Fix bottom node
    o3.Fix3DOF(osi, top_node, o3.cc.FREE, o3.cc.FIXED, o3.cc.FIXED)
    o3.Fix3DOF(osi, bot_node, o3.cc.FIXED, o3.cc.FIXED, o3.cc.FIXED)
    # Set out-of-plane DOFs to be slaved
    o3.EqualDOF(osi, top_node, bot_node, [o3.cc.Y, o3.cc.ROTZ])

    # nodal mass (weight / g):
    o3.Mass(osi, top_node, mass, 0., 0.)

    # Define material
    k_spring = 4 * np.pi**2 * mass / period**2
    bilinear_mat = o3.uniaxial_material.Steel01(osi,
                                                fy=f_yield,
                                                e0=k_spring,
                                                b=r_post)

    # Assign zero length element, # Note: pass actual node and material objects into element
    o3.element.ZeroLength(osi, [bot_node, top_node],
                          mats=[bilinear_mat],
                          dirs=[o3.cc.DOF2D_X],
                          r_flag=1)

    # Define the dynamic analysis

    # Define the dynamic analysis
    acc_series = o3.time_series.Path(osi, dt=asig.dt, values=-1 *
                                     asig.values)  # should be negative
    o3.pattern.UniformExcitation(osi, dir=o3.cc.X, accel_series=acc_series)

    # set damping based on first eigen mode
    angular_freqs = np.array(o3.get_eigen(osi, solver='fullGenLapack',
                                          n=1))**0.5
    beta_k = 2 * xi / angular_freqs[0]
    print('angular_freqs: ', angular_freqs)
    periods = 2 * np.pi / angular_freqs

    o3.rayleigh.Rayleigh(osi,
                         alpha_m=0.0,
                         beta_k=beta_k,
                         beta_k_init=0.0,
                         beta_k_comm=0.0)

    # Run the dynamic analysis
    o3.wipe_analysis(osi)

    # Run the dynamic analysis
    o3.constraints.Transformation(osi)
    o3.test_check.NormDispIncr(osi, tol=1.0e-6, max_iter=35, p_flag=0)
    o3.numberer.RCM(osi)
    if etype == 'implicit':
        o3.algorithm.Newton(osi)
        o3.system.SparseGeneral(osi)
        o3.integrator.Newmark(osi, gamma=0.5, beta=0.25)
        analysis_dt = 0.01
    else:
        o3.algorithm.Linear(osi, factor_once=True)
        o3.system.FullGeneral(osi)
        if etype == 'newmark_explicit':
            o3.integrator.NewmarkExplicit(osi, gamma=0.6)
            explicit_dt = periods[0] / np.pi / 32
        elif etype == 'central_difference':
            o3.integrator.CentralDifference(osi)
            o3.opy.integrator('HHTExplicit')
            explicit_dt = periods[0] / np.pi / 16  # 0.5 is a factor of safety
        elif etype == 'explicit_difference':
            o3.integrator.ExplicitDifference(osi)
            explicit_dt = periods[0] / np.pi / 32
        else:
            raise ValueError(etype)
        print('explicit_dt: ', explicit_dt)
        analysis_dt = explicit_dt
    o3.analysis.Transient(osi)

    analysis_time = asig.time[-1]

    outputs = {
        "time": [],
        "rel_disp": [],
        "rel_accel": [],
        "rel_vel": [],
        "force": []
    }

    while o3.get_time(osi) < analysis_time:
        o3.analyze(osi, 1, analysis_dt)
        curr_time = o3.get_time(osi)
        outputs["time"].append(curr_time)
        outputs["rel_disp"].append(o3.get_node_disp(osi, top_node, o3.cc.X))
        outputs["rel_vel"].append(o3.get_node_vel(osi, top_node, o3.cc.X))
        outputs["rel_accel"].append(o3.get_node_accel(osi, top_node, o3.cc.X))
        o3.gen_reactions(osi)
        outputs["force"].append(-o3.get_node_reaction(
            osi, bot_node, o3.cc.X))  # Negative since diff node
    o3.wipe(osi)
    for item in outputs:
        outputs[item] = np.array(outputs[item])
    return outputs
def run(show=0):
    # Load a ground motion
    record_filename = 'test_motion_dt0p01.txt'
    asig = eqsig.load_asig(ap.MODULE_DATA_PATH + 'gms/' + record_filename,
                           m=0.5)

    # Define inelastic SDOF
    period = 1.0
    xi = 0.05
    mass = 1.0
    f_yield = 1.5  # Reduce this to make it nonlinear
    r_post = 0.0

    # Initialise OpenSees instance
    osi = o3.OpenSeesInstance(ndm=2, state=0)

    # Establish nodes
    bot_node = o3.node.Node(osi, 0, 0)
    top_node = o3.node.Node(osi, 0, 0)

    # Fix bottom node
    o3.Fix3DOF(osi, top_node, o3.cc.FREE, o3.cc.FIXED, o3.cc.FIXED)
    o3.Fix3DOF(osi, bot_node, o3.cc.FIXED, o3.cc.FIXED, o3.cc.FIXED)
    # Set out-of-plane DOFs to be slaved
    o3.EqualDOF(osi, top_node, bot_node, [o3.cc.Y, o3.cc.ROTZ])

    # nodal mass (weight / g):
    o3.Mass(osi, top_node, mass, 0., 0.)

    # Define material
    k_spring = 4 * np.pi**2 * mass / period**2
    bilinear_mat = o3.uniaxial_material.Steel01(osi,
                                                fy=f_yield,
                                                e0=k_spring,
                                                b=r_post)

    # Assign zero length element, # Note: pass actual node and material objects into element
    o3.element.ZeroLength(osi, [bot_node, top_node],
                          mats=[bilinear_mat],
                          dirs=[o3.cc.DOF2D_X],
                          r_flag=1)

    # Define the dynamic analysis

    # Define the dynamic analysis
    acc_series = o3.time_series.Path(osi, dt=asig.dt, values=-1 *
                                     asig.values)  # should be negative
    o3.pattern.UniformExcitation(osi, dir=o3.cc.X, accel_series=acc_series)

    # set damping based on first eigen mode
    angular_freq = o3.get_eigen(osi, solver='fullGenLapack', n=1)[0]**0.5
    beta_k = 2 * xi / angular_freq
    o3.rayleigh.Rayleigh(osi,
                         alpha_m=0.0,
                         beta_k=beta_k,
                         beta_k_init=0.0,
                         beta_k_comm=0.0)

    # Run the dynamic analysis
    o3.wipe_analysis(osi)

    # Run the dynamic analysis
    o3.algorithm.Newton(osi)
    o3.system.SparseGeneral(osi)
    o3.numberer.RCM(osi)
    o3.constraints.Transformation(osi)
    o3.integrator.Newmark(osi, gamma=0.5, beta=0.25)
    o3.analysis.Transient(osi)

    o3.test_check.EnergyIncr(osi, tol=1.0e-10, max_iter=10)
    analysis_time = asig.time[-1]
    analysis_dt = 0.001
    outputs = {
        "time": [],
        "rel_disp": [],
        "rel_accel": [],
        "rel_vel": [],
        "force": []
    }

    while o3.get_time(osi) < analysis_time:
        o3.analyze(osi, 1, analysis_dt)
        curr_time = o3.get_time(osi)
        outputs["time"].append(curr_time)
        outputs["rel_disp"].append(o3.get_node_disp(osi, top_node, o3.cc.X))
        outputs["rel_vel"].append(o3.get_node_vel(osi, top_node, o3.cc.X))
        outputs["rel_accel"].append(o3.get_node_accel(osi, top_node, o3.cc.X))
        o3.gen_reactions(osi)
        outputs["force"].append(-o3.get_node_reaction(
            osi, bot_node, o3.cc.X))  # Negative since diff node
    o3.wipe(osi)
    for item in outputs:
        outputs[item] = np.array(outputs[item])

    if show:
        import matplotlib.pyplot as plt
        plt.plot(outputs['time'], outputs['rel_disp'], label='o3seespy')
        periods = np.array([period])

        # Compare closed form elastic solution
        from eqsig import sdof
        resp_u, resp_v, resp_a = sdof.response_series(motion=asig.values,
                                                      dt=asig.dt,
                                                      periods=periods,
                                                      xi=xi)
        plt.plot(asig.time, resp_u[0], ls='--', label='Elastic')
        plt.legend()
        plt.show()
示例#5
0
def get_elastic_response(mass, k_spring, motion, dt, xi=0.05, r_post=0.0):
    """
    Run seismic analysis of a nonlinear SDOF

    :param mass: SDOF mass
    :param k_spring: spring stiffness
    :param motion: array_like,
        acceleration values
    :param dt: float, time step of acceleration values
    :param xi: damping ratio
    :param r_post: post-yield stiffness
    :return:
    """
    osi = o3.OpenSeesInstance(ndm=2, state=3)

    height = 5.
    # Establish nodes
    bot_node = o3.node.Node(osi, 0, 0)
    top_node = o3.node.Node(osi, 0, height)

    # Fix bottom node
    o3.Fix3DOF(osi, top_node, o3.cc.FREE, o3.cc.FIXED, o3.cc.FREE)
    o3.Fix3DOF(osi, bot_node, o3.cc.FIXED, o3.cc.FIXED, o3.cc.FIXED)
    # Set out-of-plane DOFs to be slaved
    o3.EqualDOF(osi, top_node, bot_node, [o3.cc.Y])

    # nodal mass (weight / g):
    o3.Mass(osi, top_node, mass, 0., 0.)

    # Define material
    transf = o3.geom_transf.Linear2D(osi, [])
    area = 1.0
    e_mod = 1.0e6
    iz = k_spring * height ** 3 / (3 * e_mod)
    ele_nodes = [bot_node, top_node]

    ele = o3.element.ElasticBeamColumn2D(osi, ele_nodes, area=area, e_mod=e_mod, iz=iz, transf=transf)
    # Define the dynamic analysis
    acc_series = o3.time_series.Path(osi, dt=dt, values=-motion)  # should be negative
    o3.pattern.UniformExcitation(osi, dir=o3.cc.X, accel_series=acc_series)

    # set damping based on first eigen mode
    angular_freq = o3.get_eigen(osi, solver='fullGenLapack', n=1)[0] ** 0.5
    response_period = 2 * np.pi / angular_freq
    print('response_period: ', response_period)
    beta_k = 2 * xi / angular_freq
    o3.rayleigh.Rayleigh(osi, alpha_m=0.0, beta_k=beta_k, beta_k_init=0.0, beta_k_comm=0.0)

    # Run the dynamic analysis

    o3.wipe_analysis(osi)

    o3.algorithm.Newton(osi)
    o3.system.SparseGeneral(osi)
    o3.numberer.RCM(osi)
    o3.constraints.Transformation(osi)
    o3.integrator.Newmark(osi, 0.5, 0.25)
    o3.analysis.Transient(osi)
    o3.extensions.to_py_file(osi, 'simple.py')

    o3.test_check.EnergyIncr(osi, tol=1.0e-10, max_iter=10)
    analysis_time = (len(motion) - 1) * dt
    analysis_dt = 0.001
    outputs = {
        "time": [],
        "rel_disp": [],
        "rel_accel": [],
        "rel_vel": [],
        "force": []
    }

    while o3.get_time(osi) < analysis_time:

        o3.analyze(osi, 1, analysis_dt)
        curr_time = o3.get_time(osi)
        outputs["time"].append(curr_time)
        outputs["rel_disp"].append(o3.get_node_disp(osi, top_node, o3.cc.X))
        outputs["rel_vel"].append(o3.get_node_vel(osi, top_node, o3.cc.X))
        outputs["rel_accel"].append(o3.get_node_accel(osi, top_node, o3.cc.X))
        o3.gen_reactions(osi)
        outputs["force"].append(o3.get_ele_response(osi, ele, 'force'))
    o3.wipe(osi)
    for item in outputs:
        outputs[item] = np.array(outputs[item])

    return outputs
def gen_response(period, xi, asig, etype, fos_for_dt=None):

    # Define inelastic SDOF
    mass = 1.0
    f_yield = 1.5  # Reduce this to make it nonlinear
    r_post = 0.0

    # Initialise OpenSees instance
    osi = o3.OpenSeesInstance(ndm=2, state=0)

    # Establish nodes
    bot_node = o3.node.Node(osi, 0, 0)
    top_node = o3.node.Node(osi, 0, 0)

    # Fix bottom node
    o3.Fix3DOF(osi, top_node, o3.cc.FREE, o3.cc.FIXED, o3.cc.FIXED)
    o3.Fix3DOF(osi, bot_node, o3.cc.FIXED, o3.cc.FIXED, o3.cc.FIXED)
    # Set out-of-plane DOFs to be slaved
    o3.EqualDOF(osi, top_node, bot_node, [o3.cc.Y, o3.cc.ROTZ])

    # nodal mass (weight / g):
    o3.Mass(osi, top_node, mass, 0., 0.)

    # Define material
    k_spring = 4 * np.pi**2 * mass / period**2
    # bilinear_mat = o3.uniaxial_material.Steel01(osi, fy=f_yield, e0=k_spring, b=r_post)
    mat = o3.uniaxial_material.Elastic(osi, e_mod=k_spring)

    # Assign zero length element, # Note: pass actual node and material objects into element
    o3.element.ZeroLength(osi, [bot_node, top_node],
                          mats=[mat],
                          dirs=[o3.cc.DOF2D_X],
                          r_flag=1)

    # Define the dynamic analysis

    # Define the dynamic analysis
    acc_series = o3.time_series.Path(osi, dt=asig.dt, values=-1 *
                                     asig.values)  # should be negative
    o3.pattern.UniformExcitation(osi, dir=o3.cc.X, accel_series=acc_series)

    # set damping based on first eigen mode
    angular_freq = o3.get_eigen(osi, solver='fullGenLapack', n=1)[0]**0.5
    period = 2 * np.pi / angular_freq
    beta_k = 2 * xi / angular_freq
    o3.rayleigh.Rayleigh(osi,
                         alpha_m=0.0,
                         beta_k=beta_k,
                         beta_k_init=0.0,
                         beta_k_comm=0.0)

    o3.set_time(osi, 0.0)
    # Run the dynamic analysis
    o3.wipe_analysis(osi)

    # Run the dynamic analysis
    o3.numberer.RCM(osi)
    o3.system.FullGeneral(osi)
    if etype == 'central_difference':
        o3.algorithm.Linear(osi, factor_once=True)
        o3.integrator.CentralDifference(osi)
        explicit_dt = 2 / angular_freq / fos_for_dt
        analysis_dt = explicit_dt
    elif etype == 'implicit':
        o3.algorithm.Newton(osi)
        o3.integrator.Newmark(osi, gamma=0.5, beta=0.25)
        analysis_dt = 0.001
    else:
        raise ValueError()
    o3.constraints.Transformation(osi)
    o3.analysis.Transient(osi)

    o3.test_check.EnergyIncr(osi, tol=1.0e-10, max_iter=10)
    analysis_time = asig.time[-1]

    outputs = {
        "time": [],
        "rel_disp": [],
        "rel_accel": [],
        "rel_vel": [],
        "force": []
    }
    rec_dt = 0.002
    n_incs = int(analysis_dt / rec_dt)
    n_incs = 1
    while o3.get_time(osi) < analysis_time:
        o3.analyze(osi, n_incs, analysis_dt)
        curr_time = o3.get_time(osi)
        outputs["time"].append(curr_time)
        outputs["rel_disp"].append(o3.get_node_disp(osi, top_node, o3.cc.X))
        outputs["rel_vel"].append(o3.get_node_vel(osi, top_node, o3.cc.X))
        outputs["rel_accel"].append(o3.get_node_accel(osi, top_node, o3.cc.X))
        o3.gen_reactions(osi)
        outputs["force"].append(-o3.get_node_reaction(
            osi, bot_node, o3.cc.X))  # Negative since diff node
    o3.wipe(osi)
    for item in outputs:
        outputs[item] = np.array(outputs[item])
    return outputs