def _generate(self, feature_map_shape_list): return box_list.BoxList( tf.constant([[0, 0, 4, 4], [0, 4, 4, 8], [4, 0, 8, 4], [4, 4, 8, 8]], tf.float32))
def graph_fn(boxes, anchors): boxes = box_list.BoxList(boxes) anchors = box_list.BoxList(anchors) coder = faster_rcnn_box_coder.FasterRcnnBoxCoder() rel_codes = coder.encode(boxes, anchors) return rel_codes
def _extract_prediction_tensors(model, create_input_dict_fn, ignore_groundtruth=False): """Restores the model in a tensorflow session. Args: model: model to perform predictions with. create_input_dict_fn: function to create input tensor dictionaries. ignore_groundtruth: whether groundtruth should be ignored. Returns: tensor_dict: A tensor dictionary with evaluations. """ input_dict = create_input_dict_fn() prefetch_queue = prefetcher.prefetch(input_dict, capacity=500) input_dict = prefetch_queue.dequeue() original_image = tf.expand_dims(input_dict[fields.InputDataFields.image], 0) preprocessed_image = model.preprocess(tf.to_float(original_image)) prediction_dict = model.predict(preprocessed_image) detections = model.postprocess(prediction_dict) original_image_shape = tf.shape(original_image) absolute_detection_boxlist = box_list_ops.to_absolute_coordinates( box_list.BoxList(tf.squeeze(detections['detection_boxes'], axis=0)), original_image_shape[1], original_image_shape[2]) label_id_offset = 1 tensor_dict = { 'original_image': original_image, 'image_id': input_dict[fields.InputDataFields.source_id], 'detection_boxes': absolute_detection_boxlist.get(), 'detection_scores': tf.squeeze(detections['detection_scores'], axis=0), 'detection_classes': (tf.squeeze(detections['detection_classes'], axis=0) + label_id_offset), } if 'detection_masks' in detections: detection_masks = tf.squeeze(detections['detection_masks'], axis=0) detection_boxes = tf.squeeze(detections['detection_boxes'], axis=0) # TODO: This should be done in model's postprocess function ideally. detection_masks_reframed = ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, original_image_shape[1], original_image_shape[2]) detection_masks_reframed = tf.to_float( tf.greater(detection_masks_reframed, 0.5)) tensor_dict['detection_masks'] = detection_masks_reframed # load groundtruth fields into tensor_dict if not ignore_groundtruth: normalized_gt_boxlist = box_list.BoxList( input_dict[fields.InputDataFields.groundtruth_boxes]) gt_boxlist = box_list_ops.scale(normalized_gt_boxlist, tf.shape(original_image)[1], tf.shape(original_image)[2]) groundtruth_boxes = gt_boxlist.get() groundtruth_classes = input_dict[ fields.InputDataFields.groundtruth_classes] tensor_dict['groundtruth_boxes'] = groundtruth_boxes tensor_dict['groundtruth_classes'] = groundtruth_classes tensor_dict['area'] = input_dict[ fields.InputDataFields.groundtruth_area] tensor_dict['is_crowd'] = input_dict[ fields.InputDataFields.groundtruth_is_crowd] tensor_dict['difficult'] = input_dict[ fields.InputDataFields.groundtruth_difficult] if 'detection_masks' in tensor_dict: tensor_dict['groundtruth_instance_masks'] = input_dict[ fields.InputDataFields.groundtruth_instance_masks] return tensor_dict
def transform_input_data(tensor_dict, model_preprocess_fn, image_resizer_fn, num_classes, data_augmentation_fn=None, merge_multiple_boxes=False, retain_original_image=False, use_multiclass_scores=False, use_bfloat16=False, retain_original_image_additional_channels=False, keypoint_type_weight=None): """A single function that is responsible for all input data transformations. Data transformation functions are applied in the following order. 1. If key fields.InputDataFields.image_additional_channels is present in tensor_dict, the additional channels will be merged into fields.InputDataFields.image. 2. data_augmentation_fn (optional): applied on tensor_dict. 3. model_preprocess_fn: applied only on image tensor in tensor_dict. 4. keypoint_type_weight (optional): If groundtruth keypoints are in the tensor dictionary, per-keypoint weights are produced. These weights are initialized by `keypoint_type_weight` (or ones if left None). Then, for all keypoints that are not visible, the weights are set to 0 (to avoid penalizing the model in a loss function). 5. image_resizer_fn: applied on original image and instance mask tensor in tensor_dict. 6. one_hot_encoding: applied to classes tensor in tensor_dict. 7. merge_multiple_boxes (optional): when groundtruth boxes are exactly the same they can be merged into a single box with an associated k-hot class label. Args: tensor_dict: dictionary containing input tensors keyed by fields.InputDataFields. model_preprocess_fn: model's preprocess function to apply on image tensor. This function must take in a 4-D float tensor and return a 4-D preprocess float tensor and a tensor containing the true image shape. image_resizer_fn: image resizer function to apply on groundtruth instance `masks. This function must take a 3-D float tensor of an image and a 3-D tensor of instance masks and return a resized version of these along with the true shapes. num_classes: number of max classes to one-hot (or k-hot) encode the class labels. data_augmentation_fn: (optional) data augmentation function to apply on input `tensor_dict`. merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes and classes for a given image if the boxes are exactly the same. retain_original_image: (optional) whether to retain original image in the output dictionary. use_multiclass_scores: whether to use multiclass scores as class targets instead of one-hot encoding of `groundtruth_classes`. When this is True and multiclass_scores is empty, one-hot encoding of `groundtruth_classes` is used as a fallback. use_bfloat16: (optional) a bool, whether to use bfloat16 in training. retain_original_image_additional_channels: (optional) Whether to retain original image additional channels in the output dictionary. keypoint_type_weight: A list (of length num_keypoints) containing groundtruth loss weights to use for each keypoint. If None, will use a weight of 1. Returns: A dictionary keyed by fields.InputDataFields containing the tensors obtained after applying all the transformations. """ out_tensor_dict = tensor_dict.copy() labeled_classes_field = fields.InputDataFields.groundtruth_labeled_classes if labeled_classes_field in out_tensor_dict: # tf_example_decoder casts unrecognized labels to -1. Remove these # unrecognized labels before converting labeled_classes to k-hot vector. out_tensor_dict[labeled_classes_field] = _remove_unrecognized_classes( out_tensor_dict[labeled_classes_field], unrecognized_label=-1) out_tensor_dict[ labeled_classes_field] = _convert_labeled_classes_to_k_hot( out_tensor_dict[labeled_classes_field], num_classes) if fields.InputDataFields.multiclass_scores in out_tensor_dict: out_tensor_dict[ fields.InputDataFields. multiclass_scores] = _multiclass_scores_or_one_hot_labels( out_tensor_dict[fields.InputDataFields.multiclass_scores], out_tensor_dict[fields.InputDataFields.groundtruth_boxes], out_tensor_dict[fields.InputDataFields.groundtruth_classes], num_classes) if fields.InputDataFields.groundtruth_boxes in out_tensor_dict: out_tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates( out_tensor_dict) out_tensor_dict = util_ops.filter_unrecognized_classes(out_tensor_dict) if retain_original_image: out_tensor_dict[fields.InputDataFields.original_image] = tf.cast( image_resizer_fn(out_tensor_dict[fields.InputDataFields.image], None)[0], tf.uint8) if fields.InputDataFields.image_additional_channels in out_tensor_dict: channels = out_tensor_dict[ fields.InputDataFields.image_additional_channels] out_tensor_dict[fields.InputDataFields.image] = tf.concat( [out_tensor_dict[fields.InputDataFields.image], channels], axis=2) if retain_original_image_additional_channels: out_tensor_dict[ fields.InputDataFields.image_additional_channels] = tf.cast( image_resizer_fn(channels, None)[0], tf.uint8) # Apply data augmentation ops. if data_augmentation_fn is not None: out_tensor_dict = data_augmentation_fn(out_tensor_dict) # Apply model preprocessing ops and resize instance masks. image = out_tensor_dict[fields.InputDataFields.image] preprocessed_resized_image, true_image_shape = model_preprocess_fn( tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0)) preprocessed_shape = tf.shape(preprocessed_resized_image) new_height, new_width = preprocessed_shape[1], preprocessed_shape[2] im_box = tf.stack([ 0.0, 0.0, tf.to_float(new_height) / tf.to_float(true_image_shape[0, 0]), tf.to_float(new_width) / tf.to_float(true_image_shape[0, 1]) ]) if fields.InputDataFields.groundtruth_boxes in tensor_dict: bboxes = out_tensor_dict[fields.InputDataFields.groundtruth_boxes] boxlist = box_list.BoxList(bboxes) realigned_bboxes = box_list_ops.change_coordinate_frame( boxlist, im_box) realigned_boxes_tensor = realigned_bboxes.get() valid_boxes_tensor = assert_or_prune_invalid_boxes( realigned_boxes_tensor) out_tensor_dict[ fields.InputDataFields.groundtruth_boxes] = valid_boxes_tensor if fields.InputDataFields.groundtruth_keypoints in tensor_dict: keypoints = out_tensor_dict[ fields.InputDataFields.groundtruth_keypoints] realigned_keypoints = keypoint_ops.change_coordinate_frame( keypoints, im_box) out_tensor_dict[ fields.InputDataFields.groundtruth_keypoints] = realigned_keypoints flds_gt_kpt = fields.InputDataFields.groundtruth_keypoints flds_gt_kpt_vis = fields.InputDataFields.groundtruth_keypoint_visibilities flds_gt_kpt_weights = fields.InputDataFields.groundtruth_keypoint_weights if flds_gt_kpt_vis not in out_tensor_dict: out_tensor_dict[flds_gt_kpt_vis] = tf.ones_like( out_tensor_dict[flds_gt_kpt][:, :, 0], dtype=tf.bool) out_tensor_dict[flds_gt_kpt_weights] = ( keypoint_ops.keypoint_weights_from_visibilities( out_tensor_dict[flds_gt_kpt_vis], keypoint_type_weight)) if use_bfloat16: preprocessed_resized_image = tf.cast(preprocessed_resized_image, tf.bfloat16) if fields.InputDataFields.context_features in out_tensor_dict: out_tensor_dict[fields.InputDataFields.context_features] = tf.cast( out_tensor_dict[fields.InputDataFields.context_features], tf.bfloat16) out_tensor_dict[fields.InputDataFields.image] = tf.squeeze( preprocessed_resized_image, axis=0) out_tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze( true_image_shape, axis=0) if fields.InputDataFields.groundtruth_instance_masks in out_tensor_dict: masks = out_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] _, resized_masks, _ = image_resizer_fn(image, masks) if use_bfloat16: resized_masks = tf.cast(resized_masks, tf.bfloat16) out_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] = resized_masks zero_indexed_groundtruth_classes = out_tensor_dict[ fields.InputDataFields.groundtruth_classes] - _LABEL_OFFSET if use_multiclass_scores: out_tensor_dict[ fields.InputDataFields.groundtruth_classes] = out_tensor_dict[ fields.InputDataFields.multiclass_scores] else: out_tensor_dict[ fields.InputDataFields.groundtruth_classes] = tf.one_hot( zero_indexed_groundtruth_classes, num_classes) out_tensor_dict.pop(fields.InputDataFields.multiclass_scores, None) if fields.InputDataFields.groundtruth_confidences in out_tensor_dict: groundtruth_confidences = out_tensor_dict[ fields.InputDataFields.groundtruth_confidences] # Map the confidences to the one-hot encoding of classes out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = ( tf.reshape(groundtruth_confidences, [-1, 1]) * out_tensor_dict[fields.InputDataFields.groundtruth_classes]) else: groundtruth_confidences = tf.ones_like( zero_indexed_groundtruth_classes, dtype=tf.float32) out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = ( out_tensor_dict[fields.InputDataFields.groundtruth_classes]) if merge_multiple_boxes: merged_boxes, merged_classes, merged_confidences, _ = ( util_ops.merge_boxes_with_multiple_labels( out_tensor_dict[fields.InputDataFields.groundtruth_boxes], zero_indexed_groundtruth_classes, groundtruth_confidences, num_classes)) merged_classes = tf.cast(merged_classes, tf.float32) out_tensor_dict[ fields.InputDataFields.groundtruth_boxes] = merged_boxes out_tensor_dict[ fields.InputDataFields.groundtruth_classes] = merged_classes out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = ( merged_confidences) if fields.InputDataFields.groundtruth_boxes in out_tensor_dict: out_tensor_dict[ fields.InputDataFields.num_groundtruth_boxes] = tf.shape( out_tensor_dict[fields.InputDataFields.groundtruth_boxes])[0] return out_tensor_dict
def test_num_boxes_static_for_uninferrable_shape(self): placeholder = tf.placeholder(tf.float32, shape=[None, 4]) boxes = box_list.BoxList(placeholder) self.assertEquals(boxes.num_boxes_static(), None)
def boolean_mask(boxlist, indicator, fields=None, scope=None, use_static_shapes=False, indicator_sum=None): """Select boxes from BoxList according to indicator and return new BoxList. `boolean_mask` returns the subset of boxes that are marked as "True" by the indicator tensor. By default, `boolean_mask` returns boxes corresponding to the input index list, as well as all additional fields stored in the boxlist (indexing into the first dimension). However one can optionally only draw from a subset of fields. Args: boxlist: BoxList holding N boxes indicator: a rank-1 boolean tensor fields: (optional) list of fields to also gather from. If None (default), all fields are gathered from. Pass an empty fields list to only gather the box coordinates. scope: name scope. use_static_shapes: Whether to use an implementation with static shape gurantees. indicator_sum: An integer containing the sum of `indicator` vector. Only required if `use_static_shape` is True. Returns: subboxlist: a BoxList corresponding to the subset of the input BoxList specified by indicator Raises: ValueError: if `indicator` is not a rank-1 boolean tensor. """ with tf.name_scope(scope, 'BooleanMask'): if indicator.shape.ndims != 1: raise ValueError('indicator should have rank 1') if indicator.dtype != tf.bool: raise ValueError('indicator should be a boolean tensor') if use_static_shapes: if not (indicator_sum and isinstance(indicator_sum, int)): raise ValueError('`indicator_sum` must be a of type int') selected_positions = tf.cast(indicator, dtype=tf.float32) indexed_positions = tf.cast(tf.multiply( tf.cumsum(selected_positions), selected_positions), dtype=tf.int32) one_hot_selector = tf.one_hot(indexed_positions - 1, indicator_sum, dtype=tf.float32) sampled_indices = tf.cast(tf.tensordot(tf.cast(tf.range( tf.shape(indicator)[0]), dtype=tf.float32), one_hot_selector, axes=[0, 0]), dtype=tf.int32) return gather(boxlist, sampled_indices, use_static_shapes=True) else: subboxlist = box_list.BoxList( tf.boolean_mask(boxlist.get(), indicator)) if fields is None: fields = boxlist.get_extra_fields() for field in fields: if not boxlist.has_field(field): raise ValueError( 'boxlist must contain all specified fields') subfieldlist = tf.boolean_mask(boxlist.get_field(field), indicator) subboxlist.add_field(field, subfieldlist) return subboxlist
def multiclass_non_max_suppression(boxes, scores, score_thresh, iou_thresh, max_size_per_class, max_total_size=0, clip_window=None, change_coordinate_frame=False, masks=None, boundaries=None, pad_to_max_output_size=False, additional_fields=None, scope=None): """Multi-class version of non maximum suppression. This op greedily selects a subset of detection bounding boxes, pruning away boxes that have high IOU (intersection over union) overlap (> thresh) with already selected boxes. It operates independently for each class for which scores are provided (via the scores field of the input box_list), pruning boxes with score less than a provided threshold prior to applying NMS. Please note that this operation is performed on *all* classes, therefore any background classes should be removed prior to calling this function. Selected boxes are guaranteed to be sorted in decreasing order by score (but the sort is not guaranteed to be stable). Args: boxes: A [k, q, 4] float32 tensor containing k detections. `q` can be either number of classes or 1 depending on whether a separate box is predicted per class. scores: A [k, num_classes] float32 tensor containing the scores for each of the k detections. The scores have to be non-negative when pad_to_max_output_size is True. score_thresh: scalar threshold for score (low scoring boxes are removed). iou_thresh: scalar threshold for IOU (new boxes that have high IOU overlap with previously selected boxes are removed). max_size_per_class: maximum number of retained boxes per class. max_total_size: maximum number of boxes retained over all classes. By default returns all boxes retained after capping boxes per class. clip_window: A float32 tensor of the form [y_min, x_min, y_max, x_max] representing the window to clip and normalize boxes to before performing non-max suppression. change_coordinate_frame: Whether to normalize coordinates after clipping relative to clip_window (this can only be set to True if a clip_window is provided) masks: (optional) a [k, q, mask_height, mask_width] float32 tensor containing box masks. `q` can be either number of classes or 1 depending on whether a separate mask is predicted per class. boundaries: (optional) a [k, q, boundary_height, boundary_width] float32 tensor containing box boundaries. `q` can be either number of classes or 1 depending on whether a separate boundary is predicted per class. pad_to_max_output_size: If true, the output nmsed boxes are padded to be of length `max_size_per_class`. Defaults to false. additional_fields: (optional) If not None, a dictionary that maps keys to tensors whose first dimensions are all of size `k`. After non-maximum suppression, all tensors corresponding to the selected boxes will be added to resulting BoxList. scope: name scope. Returns: A tuple of sorted_boxes and num_valid_nms_boxes. The sorted_boxes is a BoxList holds M boxes with a rank-1 scores field representing corresponding scores for each box with scores sorted in decreasing order and a rank-1 classes field representing a class label for each box. The num_valid_nms_boxes is a 0-D integer tensor representing the number of valid elements in `BoxList`, with the valid elements appearing first. Raises: ValueError: if iou_thresh is not in [0, 1] or if input boxlist does not have a valid scores field. """ if not 0 <= iou_thresh <= 1.0: raise ValueError('iou_thresh must be between 0 and 1') if scores.shape.ndims != 2: raise ValueError('scores field must be of rank 2') if scores.shape[1].value is None: raise ValueError('scores must have statically defined second ' 'dimension') if boxes.shape.ndims != 3: raise ValueError('boxes must be of rank 3.') if not (boxes.shape[1].value == scores.shape[1].value or boxes.shape[1].value == 1): raise ValueError('second dimension of boxes must be either 1 or equal ' 'to the second dimension of scores') if boxes.shape[2].value != 4: raise ValueError('last dimension of boxes must be of size 4.') if change_coordinate_frame and clip_window is None: raise ValueError('if change_coordinate_frame is True, then a clip_window' 'must be specified.') with tf.name_scope(scope, 'MultiClassNonMaxSuppression'): num_scores = tf.shape(scores)[0] num_classes = scores.get_shape()[1] selected_boxes_list = [] num_valid_nms_boxes_cumulative = tf.constant(0) per_class_boxes_list = tf.unstack(boxes, axis=1) if masks is not None: per_class_masks_list = tf.unstack(masks, axis=1) if boundaries is not None: per_class_boundaries_list = tf.unstack(boundaries, axis=1) boxes_ids = (range(num_classes) if len(per_class_boxes_list) > 1 else [0] * num_classes.value) for class_idx, boxes_idx in zip(range(num_classes), boxes_ids): per_class_boxes = per_class_boxes_list[boxes_idx] boxlist_and_class_scores = box_list.BoxList(per_class_boxes) class_scores = tf.reshape( tf.slice(scores, [0, class_idx], tf.stack([num_scores, 1])), [-1]) boxlist_and_class_scores.add_field(fields.BoxListFields.scores, class_scores) if masks is not None: per_class_masks = per_class_masks_list[boxes_idx] boxlist_and_class_scores.add_field(fields.BoxListFields.masks, per_class_masks) if boundaries is not None: per_class_boundaries = per_class_boundaries_list[boxes_idx] boxlist_and_class_scores.add_field(fields.BoxListFields.boundaries, per_class_boundaries) if additional_fields is not None: for key, tensor in additional_fields.items(): boxlist_and_class_scores.add_field(key, tensor) if pad_to_max_output_size: max_selection_size = max_size_per_class selected_indices, num_valid_nms_boxes = ( tf.image.non_max_suppression_padded( boxlist_and_class_scores.get(), boxlist_and_class_scores.get_field(fields.BoxListFields.scores), max_selection_size, iou_threshold=iou_thresh, score_threshold=score_thresh, pad_to_max_output_size=True)) else: max_selection_size = tf.minimum(max_size_per_class, boxlist_and_class_scores.num_boxes()) selected_indices = tf.image.non_max_suppression( boxlist_and_class_scores.get(), boxlist_and_class_scores.get_field(fields.BoxListFields.scores), max_selection_size, iou_threshold=iou_thresh, score_threshold=score_thresh) num_valid_nms_boxes = tf.shape(selected_indices)[0] selected_indices = tf.concat( [selected_indices, tf.zeros(max_selection_size-num_valid_nms_boxes, tf.int32)], 0) nms_result = box_list_ops.gather(boxlist_and_class_scores, selected_indices) # Make the scores -1 for invalid boxes. valid_nms_boxes_indx = tf.less( tf.range(max_selection_size), num_valid_nms_boxes) nms_scores = nms_result.get_field(fields.BoxListFields.scores) nms_result.add_field(fields.BoxListFields.scores, tf.where(valid_nms_boxes_indx, nms_scores, -1*tf.ones(max_selection_size))) num_valid_nms_boxes_cumulative += num_valid_nms_boxes nms_result.add_field( fields.BoxListFields.classes, (tf.zeros_like( nms_result.get_field(fields.BoxListFields.scores)) + class_idx)) selected_boxes_list.append(nms_result) selected_boxes = box_list_ops.concatenate(selected_boxes_list) sorted_boxes = box_list_ops.sort_by_field(selected_boxes, fields.BoxListFields.scores) if clip_window is not None: # When pad_to_max_output_size is False, it prunes the boxes with zero # area. sorted_boxes = box_list_ops.clip_to_window( sorted_boxes, clip_window, filter_nonoverlapping=not pad_to_max_output_size) # Set the scores of boxes with zero area to -1 to keep the default # behaviour of pruning out zero area boxes. sorted_boxes_size = tf.shape(sorted_boxes.get())[0] non_zero_box_area = tf.cast(box_list_ops.area(sorted_boxes), tf.bool) sorted_boxes_scores = tf.where( non_zero_box_area, sorted_boxes.get_field(fields.BoxListFields.scores), -1*tf.ones(sorted_boxes_size)) sorted_boxes.add_field(fields.BoxListFields.scores, sorted_boxes_scores) num_valid_nms_boxes_cumulative = tf.reduce_sum( tf.cast(tf.greater_equal(sorted_boxes_scores, 0), tf.int32)) sorted_boxes = box_list_ops.sort_by_field(sorted_boxes, fields.BoxListFields.scores) if change_coordinate_frame: sorted_boxes = box_list_ops.change_coordinate_frame( sorted_boxes, clip_window) if max_total_size: max_total_size = tf.minimum(max_total_size, sorted_boxes.num_boxes()) sorted_boxes = box_list_ops.gather(sorted_boxes, tf.range(max_total_size)) num_valid_nms_boxes_cumulative = tf.where( max_total_size > num_valid_nms_boxes_cumulative, num_valid_nms_boxes_cumulative, max_total_size) # Select only the valid boxes if pad_to_max_output_size is False. if not pad_to_max_output_size: sorted_boxes = box_list_ops.gather( sorted_boxes, tf.range(num_valid_nms_boxes_cumulative)) return sorted_boxes, num_valid_nms_boxes_cumulative
def ExtractLocalAndGlobalFeatures(image, image_scales, max_feature_num, abs_thres, global_scales_ind, iou, model_fn, stride_factor): """Extract local+global features for input image. Args: image: image tensor of type tf.uint8 with shape [h, w, channels]. image_scales: 1D float tensor which contains float scales used for image pyramid construction. max_feature_num: int tensor denoting the maximum selected feature points. abs_thres: float tensor denoting the score threshold for feature selection. global_scales_ind: Global feature extraction happens only for a subset of `image_scales`, those with corresponding indices from this tensor. iou: float scalar denoting the iou threshold for NMS. model_fn: model function. Follows the signature: * Args: * `images`: Batched image tensor. * Returns: * `global_descriptors`: Global descriptors for input images. * `attention_prob`: Attention map after the non-linearity. * `feature_map`: Feature map after ResNet convolution. stride_factor: integer accounting for striding after block3. Returns: boxes: [N, 4] float tensor which denotes the selected receptive boxes. N is the number of final feature points which pass through keypoint selection and NMS steps. local_descriptors: [N, depth] float tensor. feature_scales: [N] float tensor. It is the inverse of the input image scales such that larger image scales correspond to larger image regions, which is compatible with keypoints detected with other techniques, for example Congas. scores: [N, 1] float tensor denoting the attention score. global_descriptors: [S, D] float tensor, with the global descriptors for each scale; S is the number of scales, and D the global descriptor dimensionality. """ original_image_shape_float = tf.gather( tf.dtypes.cast(tf.shape(image), tf.float32), [0, 1]) image_tensor = gld.NormalizeImages(image, pixel_value_offset=128.0, pixel_value_scale=128.0) image_tensor = tf.expand_dims(image_tensor, 0, name='image/expand_dims') # Hard code the receptive field parameters for now. # We need to revisit this once we change the architecture and selected # convolutional blocks to use as local features. rf, stride, padding = [291.0, 16.0 * stride_factor, 145.0] def _ResizeAndExtract(scale_index): """Helper function to resize image then extract features. Args: scale_index: A valid index in image_scales. Returns: global_descriptor: [1,D] tensor denoting the extracted global descriptor. boxes: Box tensor with the shape of [K, 4]. local_descriptors: Local descriptor tensor with the shape of [K, depth]. scales: Scale tensor with the shape of [K]. scores: Score tensor with the shape of [K]. """ scale = tf.gather(image_scales, scale_index) new_image_size = tf.dtypes.cast( tf.round(original_image_shape_float * scale), tf.int32) resized_image = tf.image.resize(image_tensor, new_image_size) global_descriptor, attention_prob, feature_map = model_fn( resized_image) attention_prob = tf.squeeze(attention_prob, axis=[0]) feature_map = tf.squeeze(feature_map, axis=[0]) # Compute RF boxes and re-project them to the original image space. rf_boxes = feature_extractor.CalculateReceptiveBoxes( tf.shape(feature_map)[0], tf.shape(feature_map)[1], rf, stride, padding) rf_boxes = tf.divide(rf_boxes, scale) attention_prob = tf.reshape(attention_prob, [-1]) feature_map = tf.reshape(feature_map, [-1, tf.shape(feature_map)[2]]) # Use attention score to select local features. indices = tf.reshape(tf.where(attention_prob >= abs_thres), [-1]) boxes = tf.gather(rf_boxes, indices) local_descriptors = tf.gather(feature_map, indices) scores = tf.gather(attention_prob, indices) scales = tf.ones_like(scores, tf.float32) / scale return global_descriptor, boxes, local_descriptors, scales, scores # TODO(andrearaujo): Currently, a global feature is extracted even for scales # which are not using it. The obtained result is correct, however feature # extraction is slower than expected. We should try to fix this in the future. # Run first scale. (output_global_descriptors, output_boxes, output_local_descriptors, output_scales, output_scores) = _ResizeAndExtract(0) if not tf.reduce_any(tf.equal(global_scales_ind, 0)): # If global descriptor is not using the first scale, clear it out. output_global_descriptors = tf.zeros( [0, tf.shape(output_global_descriptors)[1]]) # Loop over subsequent scales. num_scales = tf.shape(image_scales)[0] for scale_index in tf.range(1, num_scales): # Allow an undefined number of global feature scales to be extracted. tf.autograph.experimental.set_loop_options( shape_invariants=[(output_global_descriptors, tf.TensorShape([None, None]))]) (global_descriptor, boxes, local_descriptors, scales, scores) = _ResizeAndExtract(scale_index) output_boxes = tf.concat([output_boxes, boxes], 0) output_local_descriptors = tf.concat( [output_local_descriptors, local_descriptors], 0) output_scales = tf.concat([output_scales, scales], 0) output_scores = tf.concat([output_scores, scores], 0) if tf.reduce_any(tf.equal(global_scales_ind, scale_index)): output_global_descriptors = tf.concat( [output_global_descriptors, global_descriptor], 0) feature_boxes = box_list.BoxList(output_boxes) feature_boxes.add_field('local_descriptors', output_local_descriptors) feature_boxes.add_field('scales', output_scales) feature_boxes.add_field('scores', output_scores) nms_max_boxes = tf.minimum(max_feature_num, feature_boxes.num_boxes()) final_boxes = box_list_ops.non_max_suppression(feature_boxes, iou, nms_max_boxes) return (final_boxes.get(), final_boxes.get_field('local_descriptors'), final_boxes.get_field('scales'), tf.expand_dims(final_boxes.get_field('scores'), 1), output_global_descriptors)
def ExtractLocalFeatures(image, image_scales, max_feature_num, abs_thres, iou, attention_model_fn, stride_factor): """Extract local features for input image. Args: image: image tensor of type tf.uint8 with shape [h, w, channels]. image_scales: 1D float tensor which contains float scales used for image pyramid construction. max_feature_num: int tensor denoting the maximum selected feature points. abs_thres: float tensor denoting the score threshold for feature selection. iou: float scalar denoting the iou threshold for NMS. attention_model_fn: model function. Follows the signature: * Args: * `images`: Image tensor which is re-scaled. * Returns: * `attention_prob`: attention map after the non-linearity. * `feature_map`: feature map after ResNet convolution. stride_factor: integer accounting for striding after block3. Returns: boxes: [N, 4] float tensor which denotes the selected receptive box. N is the number of final feature points which pass through keypoint selection and NMS steps. features: [N, depth] float tensor. feature_scales: [N] float tensor. It is the inverse of the input image scales such that larger image scales correspond to larger image regions, which is compatible with keypoints detected with other techniques, for example Congas. scores: [N, 1] float tensor denoting the attention score. """ original_image_shape_float = tf.gather( tf.dtypes.cast(tf.shape(image), tf.float32), [0, 1]) image_tensor = gld.NormalizeImages(image, pixel_value_offset=128.0, pixel_value_scale=128.0) image_tensor = tf.expand_dims(image_tensor, 0, name='image/expand_dims') # Hard code the feature depth and receptive field parameters for now. # We need to revisit this once we change the architecture and selected # convolutional blocks to use as local features. rf, stride, padding = [291.0, 16.0 * stride_factor, 145.0] feature_depth = 1024 def _ProcessSingleScale(scale_index, boxes, features, scales, scores): """Resizes the image and run feature extraction and keypoint selection. This function will be passed into tf.while_loop() and be called repeatedly. The input boxes are collected from the previous iteration [0: scale_index -1]. We get the current scale by image_scales[scale_index], and run resize image, feature extraction and keypoint selection. Then we will get a new set of selected_boxes for current scale. In the end, we concat the previous boxes with current selected_boxes as the output. Args: scale_index: A valid index in the image_scales. boxes: Box tensor with the shape of [N, 4]. features: Feature tensor with the shape of [N, depth]. scales: Scale tensor with the shape of [N]. scores: Attention score tensor with the shape of [N]. Returns: scale_index: The next scale index for processing. boxes: Concatenated box tensor with the shape of [K, 4]. K >= N. features: Concatenated feature tensor with the shape of [K, depth]. scales: Concatenated scale tensor with the shape of [K]. scores: Concatenated score tensor with the shape of [K]. """ scale = tf.gather(image_scales, scale_index) new_image_size = tf.dtypes.cast( tf.round(original_image_shape_float * scale), tf.int32) resized_image = tf.image.resize(image_tensor, new_image_size) attention_prob, feature_map = attention_model_fn(resized_image) attention_prob = tf.squeeze(attention_prob, axis=[0]) feature_map = tf.squeeze(feature_map, axis=[0]) rf_boxes = feature_extractor.CalculateReceptiveBoxes( tf.shape(feature_map)[0], tf.shape(feature_map)[1], rf, stride, padding) # Re-project back to the original image space. rf_boxes = tf.divide(rf_boxes, scale) attention_prob = tf.reshape(attention_prob, [-1]) feature_map = tf.reshape(feature_map, [-1, feature_depth]) # Use attention score to select feature vectors. indices = tf.reshape(tf.where(attention_prob >= abs_thres), [-1]) selected_boxes = tf.gather(rf_boxes, indices) selected_features = tf.gather(feature_map, indices) selected_scores = tf.gather(attention_prob, indices) selected_scales = tf.ones_like(selected_scores, tf.float32) / scale # Concat with the previous result from different scales. boxes = tf.concat([boxes, selected_boxes], 0) features = tf.concat([features, selected_features], 0) scales = tf.concat([scales, selected_scales], 0) scores = tf.concat([scores, selected_scores], 0) return scale_index + 1, boxes, features, scales, scores output_boxes = tf.zeros([0, 4], dtype=tf.float32) output_features = tf.zeros([0, feature_depth], dtype=tf.float32) output_scales = tf.zeros([0], dtype=tf.float32) output_scores = tf.zeros([0], dtype=tf.float32) # Process the first scale separately, the following scales will reuse the # graph variables. (_, output_boxes, output_features, output_scales, output_scores) = _ProcessSingleScale(0, output_boxes, output_features, output_scales, output_scores) i = tf.constant(1, dtype=tf.int32) num_scales = tf.shape(image_scales)[0] keep_going = lambda j, b, f, scales, scores: tf.less(j, num_scales) (_, output_boxes, output_features, output_scales, output_scores) = tf.nest.map_structure( tf.stop_gradient, tf.while_loop(cond=keep_going, body=_ProcessSingleScale, loop_vars=[ i, output_boxes, output_features, output_scales, output_scores ], shape_invariants=[ i.get_shape(), tf.TensorShape([None, 4]), tf.TensorShape([None, feature_depth]), tf.TensorShape([None]), tf.TensorShape([None]) ])) feature_boxes = box_list.BoxList(output_boxes) feature_boxes.add_field('features', output_features) feature_boxes.add_field('scales', output_scales) feature_boxes.add_field('scores', output_scores) nms_max_boxes = tf.minimum(max_feature_num, feature_boxes.num_boxes()) final_boxes = box_list_ops.non_max_suppression(feature_boxes, iou, nms_max_boxes) return final_boxes.get(), final_boxes.get_field( 'features'), final_boxes.get_field('scales'), tf.expand_dims( final_boxes.get_field('scores'), 1)
def graph_fn(boxes, anchors): anchors = box_list.BoxList(anchors) boxes = box_list.BoxList(boxes) coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1) rel_codes = coder.encode(boxes, anchors) return rel_codes
def graph_fn(rel_codes, anchors): anchors = box_list.BoxList(anchors) coder = mean_stddev_box_coder.MeanStddevBoxCoder(stddev=0.1) decoded_boxes = coder.decode(rel_codes, anchors).get() return decoded_boxes
def add_single_image_info(self, image_id, eval_dict): groundtruth_boxes = eval_dict[ standard_fields.InputDataFields.groundtruth_boxes] groundtruth_classes = eval_dict[ standard_fields.InputDataFields.groundtruth_classes] detection_boxes = eval_dict[ standard_fields.DetectionResultFields.detection_boxes] detection_scores = eval_dict[ standard_fields.DetectionResultFields.detection_scores] detection_classes = eval_dict[ standard_fields.DetectionResultFields.detection_classes] groundtruth_has_rotation = groundtruth_classes > 1 groundtruth_boxes_with_rotation = groundtruth_boxes[ groundtruth_has_rotation] #ensure classes are both not 'dot' class, so they have a meaningful rotation value detection_within_score = detection_scores > self._score_threshold detection_class_has_rotation = detection_classes > 1 detection_has_rotation_and_score = tf.logical_and( detection_within_score, detection_class_has_rotation) detection_boxes_within_score = detection_boxes[ detection_has_rotation_and_score] detection_classes_within_score = detection_classes[ detection_has_rotation_and_score] gt_boxlist = box_list.BoxList( tf.convert_to_tensor(groundtruth_boxes_with_rotation)) det_boxlist = box_list.BoxList( tf.convert_to_tensor(detection_boxes_within_score)) detection_y_rotation_angles = eval_dict[ additional_fields.DetectionResultFields.y_rotation_angles] groundtruth_y_rotation_angles = eval_dict[ additional_fields.GroundtruthResultFields.y_rotation_angles] detection_y_rotation_angles_within_score = detection_y_rotation_angles[ detection_has_rotation_and_score] for iou_threshold, assigner in self._iou_thresholds_and_assigners: cls_targets, cls_weights, reg_targets, reg_weights, match = assigner.assign( det_boxlist, gt_boxlist) fg_detections = match >= 0 fg_detection_boxes = detection_boxes_within_score[fg_detections, :] fg_matches = match[fg_detections] fg_matches_argsort = tf.argsort(fg_matches) fg_matches_sorted = tf.gather(fg_matches, fg_matches_argsort) gt_match_indices, fg_match_sorted_indices_with_repeats, fg_match_sorted_indices_counts = tf.unique_with_counts( fg_matches_sorted) fg_match_sorted_indices_no_repeats = tf.cumsum( tf.pad(fg_match_sorted_indices_counts, [[1, 0]]))[:-1] fg_match_indices_no_repeats = tf.gather( fg_matches_argsort, fg_match_sorted_indices_no_repeats) def get_matches_and_angle_difference(fg_match_idx_tensor, gt_match_idx_tensor): if debug_get_matching_boxes: gt_matching_detection_boxes = tf.gather( groundtruth_boxes_with_rotation, gt_match_idx_tensor, axis=0) fg_matching_detection_boxes = tf.gather( fg_detection_boxes, fg_match_idx_tensor, axis=0) pass fg_matching_detection_y_rot_angles = tf.gather( detection_y_rotation_angles_within_score, fg_match_idx_tensor, axis=0) groundtruth_y_rotation_angles_matches = tf.gather( groundtruth_y_rotation_angles, gt_match_idx_tensor, axis=0) groundtruth_has_y_rot = tf.math.logical_not( tf.math.equal(groundtruth_y_rotation_angles_matches, 0)) groundtruth_existant_y_rot_angle = groundtruth_y_rotation_angles_matches[ groundtruth_has_y_rot] detection_existant_y_rot_angle = fg_matching_detection_y_rot_angles[ groundtruth_has_y_rot] angle_diff = detection_existant_y_rot_angle - groundtruth_existant_y_rot_angle angle_diff_unwrapped = tf.math.atan2(tf.math.sin(angle_diff), tf.math.cos(angle_diff)) angle_diff_abs = tf.math.abs(angle_diff_unwrapped) n_angle_matches = len(angle_diff) return n_angle_matches, angle_diff_abs num_angle_matches, abs_angle_differences = get_matches_and_angle_difference( fg_match_indices_no_repeats, gt_match_indices) angle_diff_sum_square = tf.reduce_sum( tf.math.square(abs_angle_differences * 180 / np.pi)) match_angle_diff_histogram = tf.histogram_fixed_width( abs_angle_differences * 180 / np.pi, self._histogram_range, nbins=self._num_angle_bins, dtype=tf.dtypes.int32) self.total_num_angle_matches[iou_threshold] += num_angle_matches self.total_angle_diff_sum_squared[ iou_threshold] += angle_diff_sum_square self.angle_histograms[iou_threshold] += match_angle_diff_histogram
def _generate(self, feature_map_shape_list, im_height=1, im_width=1): """Generates a collection of bounding boxes to be used as anchors. The number of anchors generated for a single grid with shape MxM where we place k boxes over each grid center is k*M^2 and thus the total number of anchors is the sum over all grids. Args: feature_map_shape_list: list of a pair of convnet layer resolutions in the format [(height, width)]. For example, setting feature_map_shape=[(8, 8)] asks for anchors that correspond to an 8x8 layer. im_height: the height of the image to generate the grid for. If both im_height and im_width are 1, the generated anchors default to normalized coordinates, otherwise absolute coordinates are used for the grid. im_width: the width of the image to generate the grid for. If both im_height and im_width are 1, the generated anchors default to normalized coordinates, otherwise absolute coordinates are used for the grid. Returns: boxes: a BoxList holding a collection of N anchor boxes Raises: ValueError: if feature_map_shape_list, box_specs_list do not have the same length. ValueError: if feature_map_shape_list does not consist of pairs of integers """ if len(feature_map_shape_list) != 1 or len(feature_map_shape_list[0]) != 2: raise ValueError('feature_map_shape_list must be a list of a pair') # Yolo has only one feature_map. so [0] mean the only map which is first. feature_map_shape = feature_map_shape_list[0] im_height = tf.to_float(im_height) im_width = tf.to_float(im_width) if not self._anchor_stride: anchor_stride = (1.0 / tf.to_float(feature_map_shape[0]), 1.0 / tf.to_float(feature_map_shape[1])) else: anchor_stride = (tf.to_float(self._anchor_stride[0]) / im_height, tf.to_float(self._anchor_stride[1]) / im_width) if not self._anchor_offset: anchor_offset = (0.5 * anchor_stride[0], 0.5 * anchor_stride[1]) else: anchor_offset = (tf.to_float(self._anchor_offset[0]) / im_height, tf.to_float(self._anchor_offset[1]) / im_width) if (anchor_stride and len(anchor_stride) != 2): raise ValueError('anchor_stride must be a pair.') if (anchor_offset and len(anchor_offset) != 2): raise ValueError('anchor_offset must be a pair.') # Anchors are devided into size of feature map to make the size of anchors within (0 ~ 1) anchor_widths = [anchor[0]/feature_map_shape[0] for anchor in self._anchors] anchor_heights = [anchor[1]/feature_map_shape[1] for anchor in self._anchors] heights = anchor_heights * self._base_anchor_size[0] widths = anchor_widths * self._base_anchor_size[1] x_centers = tf.to_float(tf.range(feature_map_shape[0])) x_centers = x_centers * anchor_stride[0] + anchor_offset[0] y_centers = tf.to_float(tf.range(feature_map_shape[1])) y_centers = y_centers * anchor_stride[1] + anchor_offset[1] x_centers, y_centers = ops.meshgrid(x_centers, y_centers) widths_grid, x_centers_grid = ops.meshgrid(widths, x_centers) heights_grid, y_centers_grid = ops.meshgrid(heights, y_centers) bbox_centers = tf.stack([y_centers_grid, x_centers_grid], axis=3) bbox_sizes = tf.stack([heights_grid, widths_grid], axis=3) bbox_centers = tf.reshape(bbox_centers, [-1, 2]) bbox_sizes = tf.reshape(bbox_sizes, [-1, 2]) bbox_corners = grid_anchor_generator._center_size_bbox_to_corners_bbox( bbox_centers, bbox_sizes) anchors = box_list.BoxList(bbox_corners) num_anchors = anchors.num_boxes_static() if num_anchors is None: num_anchors = anchors.num_boxes() stddevs_tensor = 0.01 * tf.ones( [num_anchors, 4], dtype=tf.float32, name='stddevs') anchors.add_field('stddev', stddevs_tensor) return anchors
def transform_input_data(tensor_dict, model_preprocess_fn, image_resizer_fn, num_classes, data_augmentation_fn=None, merge_multiple_boxes=False, retain_original_image=False, use_multiclass_scores=False, use_bfloat16=False, retain_original_image_additional_channels=False): """A single function that is responsible for all input data transformations. Data transformation functions are applied in the following order. 1. If key fields.InputDataFields.image_additional_channels is present in tensor_dict, the additional channels will be merged into fields.InputDataFields.image. 2. data_augmentation_fn (optional): applied on tensor_dict. 3. model_preprocess_fn: applied only on image tensor in tensor_dict. 4. image_resizer_fn: applied on original image and instance mask tensor in tensor_dict. 5. one_hot_encoding: applied to classes tensor in tensor_dict. 6. merge_multiple_boxes (optional): when groundtruth boxes are exactly the same they can be merged into a single box with an associated k-hot class label. Args: tensor_dict: dictionary containing input tensors keyed by fields.InputDataFields. model_preprocess_fn: model's preprocess function to apply on image tensor. This function must take in a 4-D float tensor and return a 4-D preprocess float tensor and a tensor containing the true image shape. image_resizer_fn: image resizer function to apply on groundtruth instance `masks. This function must take a 3-D float tensor of an image and a 3-D tensor of instance masks and return a resized version of these along with the true shapes. num_classes: number of max classes to one-hot (or k-hot) encode the class labels. data_augmentation_fn: (optional) data augmentation function to apply on input `tensor_dict`. merge_multiple_boxes: (optional) whether to merge multiple groundtruth boxes and classes for a given image if the boxes are exactly the same. retain_original_image: (optional) whether to retain original image in the output dictionary. use_multiclass_scores: whether to use multiclass scores as class targets instead of one-hot encoding of `groundtruth_classes`. When this is True and multiclass_scores is empty, one-hot encoding of `groundtruth_classes` is used as a fallback. use_bfloat16: (optional) a bool, whether to use bfloat16 in training. retain_original_image_additional_channels: (optional) Whether to retain original image additional channels in the output dictionary. Returns: A dictionary keyed by fields.InputDataFields containing the tensors obtained after applying all the transformations. """ out_tensor_dict = tensor_dict.copy() if fields.InputDataFields.multiclass_scores in out_tensor_dict: out_tensor_dict[ fields.InputDataFields .multiclass_scores] = _multiclass_scores_or_one_hot_labels( out_tensor_dict[fields.InputDataFields.multiclass_scores], out_tensor_dict[fields.InputDataFields.groundtruth_boxes], out_tensor_dict[fields.InputDataFields.groundtruth_classes], num_classes) if fields.InputDataFields.groundtruth_boxes in out_tensor_dict: out_tensor_dict = util_ops.filter_groundtruth_with_nan_box_coordinates( out_tensor_dict) out_tensor_dict = util_ops.filter_unrecognized_classes(out_tensor_dict) if retain_original_image: out_tensor_dict[fields.InputDataFields.original_image] = tf.cast( image_resizer_fn(out_tensor_dict[fields.InputDataFields.image], None)[0], tf.uint8) if fields.InputDataFields.image_additional_channels in out_tensor_dict: channels = out_tensor_dict[fields.InputDataFields.image_additional_channels] out_tensor_dict[fields.InputDataFields.image] = tf.concat( [out_tensor_dict[fields.InputDataFields.image], channels], axis=2) if retain_original_image_additional_channels: out_tensor_dict[ fields.InputDataFields.image_additional_channels] = tf.cast( image_resizer_fn(channels, None)[0], tf.uint8) # Apply data augmentation ops. if data_augmentation_fn is not None: out_tensor_dict = data_augmentation_fn(out_tensor_dict) # Apply model preprocessing ops and resize instance masks. image = out_tensor_dict[fields.InputDataFields.image] preprocessed_resized_image, true_image_shape = model_preprocess_fn( tf.expand_dims(tf.cast(image, dtype=tf.float32), axis=0)) preprocessed_shape = tf.shape(preprocessed_resized_image) new_height, new_width = preprocessed_shape[1], preprocessed_shape[2] im_box = tf.stack([ 0.0, 0.0, tf.to_float(new_height) / tf.to_float(true_image_shape[0, 0]), tf.to_float(new_width) / tf.to_float(true_image_shape[0, 1]) ]) if fields.InputDataFields.groundtruth_boxes in tensor_dict: bboxes = out_tensor_dict[fields.InputDataFields.groundtruth_boxes] boxlist = box_list.BoxList(bboxes) realigned_bboxes = box_list_ops.change_coordinate_frame(boxlist, im_box) out_tensor_dict[ fields.InputDataFields.groundtruth_boxes] = realigned_bboxes.get() if fields.InputDataFields.groundtruth_keypoints in tensor_dict: keypoints = out_tensor_dict[fields.InputDataFields.groundtruth_keypoints] realigned_keypoints = keypoint_ops.change_coordinate_frame(keypoints, im_box) out_tensor_dict[ fields.InputDataFields.groundtruth_keypoints] = realigned_keypoints if use_bfloat16: preprocessed_resized_image = tf.cast( preprocessed_resized_image, tf.bfloat16) out_tensor_dict[fields.InputDataFields.image] = tf.squeeze( preprocessed_resized_image, axis=0) out_tensor_dict[fields.InputDataFields.true_image_shape] = tf.squeeze( true_image_shape, axis=0) if fields.InputDataFields.groundtruth_instance_masks in out_tensor_dict: masks = out_tensor_dict[fields.InputDataFields.groundtruth_instance_masks] _, resized_masks, _ = image_resizer_fn(image, masks) if use_bfloat16: resized_masks = tf.cast(resized_masks, tf.bfloat16) out_tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] = resized_masks label_offset = 1 zero_indexed_groundtruth_classes = out_tensor_dict[ fields.InputDataFields.groundtruth_classes] - label_offset if use_multiclass_scores: out_tensor_dict[ fields.InputDataFields.groundtruth_classes] = out_tensor_dict[ fields.InputDataFields.multiclass_scores] else: out_tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot( zero_indexed_groundtruth_classes, num_classes) out_tensor_dict.pop(fields.InputDataFields.multiclass_scores, None) if fields.InputDataFields.groundtruth_confidences in out_tensor_dict: groundtruth_confidences = out_tensor_dict[ fields.InputDataFields.groundtruth_confidences] # Map the confidences to the one-hot encoding of classes out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = ( tf.reshape(groundtruth_confidences, [-1, 1]) * out_tensor_dict[fields.InputDataFields.groundtruth_classes]) else: groundtruth_confidences = tf.ones_like( zero_indexed_groundtruth_classes, dtype=tf.float32) out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = ( out_tensor_dict[fields.InputDataFields.groundtruth_classes]) if merge_multiple_boxes: merged_boxes, merged_classes, merged_confidences, _ = ( util_ops.merge_boxes_with_multiple_labels( out_tensor_dict[fields.InputDataFields.groundtruth_boxes], zero_indexed_groundtruth_classes, groundtruth_confidences, num_classes)) merged_classes = tf.cast(merged_classes, tf.float32) out_tensor_dict[fields.InputDataFields.groundtruth_boxes] = merged_boxes out_tensor_dict[fields.InputDataFields.groundtruth_classes] = merged_classes out_tensor_dict[fields.InputDataFields.groundtruth_confidences] = ( merged_confidences) if fields.InputDataFields.groundtruth_boxes in out_tensor_dict: out_tensor_dict[fields.InputDataFields.num_groundtruth_boxes] = tf.shape( out_tensor_dict[fields.InputDataFields.groundtruth_boxes])[0] return out_tensor_dict
def graph_fn(boxes): boxes = box_list.BoxList(boxes) boxes.transpose_coordinates() return boxes.get()
def _decode(self, rel_codes, anchors): return box_list.BoxList(rel_codes + anchors.get())
def _scale_box_to_absolute(args): boxes, image_shape = args return box_list_ops.to_absolute_coordinates( box_list.BoxList(boxes), image_shape[0], image_shape[1]).get()
def _generate(self, feature_map_shape_list): num_anchors = sum( [shape[0] * shape[1] for shape in feature_map_shape_list]) return box_list.BoxList(tf.zeros((num_anchors, 4), dtype=tf.float32))
def _decode(self, rel_codes, anchors): return box_list.BoxList(rel_codes / 2.0)
def _to_absolute_coordinates(normalized_boxes): return box_list_ops.to_absolute_coordinates( box_list.BoxList(normalized_boxes), image_shape[1], image_shape[2], check_range=False).get()
def box_voting(selected_boxes, pool_boxes, iou_thresh=0.5): """Performs box voting as described in S. Gidaris and N. Komodakis, ICCV 2015. Performs box voting as described in 'Object detection via a multi-region & semantic segmentation-aware CNN model', Gidaris and Komodakis, ICCV 2015. For each box 'B' in selected_boxes, we find the set 'S' of boxes in pool_boxes with iou overlap >= iou_thresh. The location of B is set to the weighted average location of boxes in S (scores are used for weighting). And the score of B is set to the average score of boxes in S. Args: selected_boxes: BoxList containing a subset of boxes in pool_boxes. These boxes are usually selected from pool_boxes using non max suppression. pool_boxes: BoxList containing a set of (possibly redundant) boxes. iou_thresh: (float scalar) iou threshold for matching boxes in selected_boxes and pool_boxes. Returns: BoxList containing averaged locations and scores for each box in selected_boxes. Raises: ValueError: if a) selected_boxes or pool_boxes is not a BoxList. b) if iou_thresh is not in [0, 1]. c) pool_boxes does not have a scores field. """ if not 0.0 <= iou_thresh <= 1.0: raise ValueError('iou_thresh must be between 0 and 1') if not isinstance(selected_boxes, box_list.BoxList): raise ValueError('selected_boxes must be a BoxList') if not isinstance(pool_boxes, box_list.BoxList): raise ValueError('pool_boxes must be a BoxList') if not pool_boxes.has_field('scores'): raise ValueError('pool_boxes must have a \'scores\' field') iou_ = iou(selected_boxes, pool_boxes) match_indicator = tf.to_float(tf.greater(iou_, iou_thresh)) num_matches = tf.reduce_sum(match_indicator, 1) # TODO: Handle the case where some boxes in selected_boxes do not match to any # boxes in pool_boxes. For such boxes without any matches, we should return # the original boxes without voting. match_assert = tf.Assert( tf.reduce_all(tf.greater(num_matches, 0)), ['Each box in selected_boxes must match with at least one box ' 'in pool_boxes.']) scores = tf.expand_dims(pool_boxes.get_field('scores'), 1) scores_assert = tf.Assert( tf.reduce_all(tf.greater_equal(scores, 0)), ['Scores must be non negative.']) with tf.control_dependencies([scores_assert, match_assert]): sum_scores = tf.matmul(match_indicator, scores) averaged_scores = tf.reshape(sum_scores, [-1]) / num_matches box_locations = tf.matmul(match_indicator, pool_boxes.get() * scores) / sum_scores averaged_boxes = box_list.BoxList(box_locations) _copy_extra_fields(averaged_boxes, selected_boxes) averaged_boxes.add_field('scores', averaged_scores) return averaged_boxes
def test_batch_assign_targets(self): box_list1 = box_list.BoxList(tf.constant([[0., 0., 0.2, 0.2]])) box_list2 = box_list.BoxList( tf.constant([[0, 0.25123152, 1, 1], [0.015789, 0.0985, 0.55789, 0.3842]])) gt_box_batch = [box_list1, box_list2] gt_class_targets = [None, None] prior_means = tf.constant([[0, 0, .25, .25], [0, .25, 1, 1], [0, .1, .5, .5], [.75, .75, 1, 1]]) prior_stddevs = tf.constant([[.1, .1, .1, .1], [.1, .1, .1, .1], [.1, .1, .1, .1], [.1, .1, .1, .1]]) priors = box_list.BoxList(prior_means) priors.add_field('stddev', prior_stddevs) exp_reg_targets = [[ [0, 0, -0.5, -0.5], [0, 0, 0, 0], [ 0, 0, 0, 0, ], [ 0, 0, 0, 0, ], ], [[ 0, 0, 0, 0, ], [0, 0.01231521, 0, 0], [0.15789001, -0.01500003, 0.57889998, -1.15799987], [0, 0, 0, 0]]] exp_cls_weights = [[1, 1, 1, 1], [1, 1, 1, 1]] exp_cls_targets = [[[1], [0], [0], [0]], [[0], [1], [1], [0]]] exp_reg_weights = [[1, 0, 0, 0], [0, 1, 1, 0]] exp_match_0 = [0] exp_match_1 = [1, 2] agnostic_target_assigner = self._get_agnostic_target_assigner() (cls_targets, cls_weights, reg_targets, reg_weights, match_list) = targetassigner.batch_assign_targets( agnostic_target_assigner, priors, gt_box_batch, gt_class_targets) self.assertTrue(isinstance(match_list, list) and len(match_list) == 2) with self.test_session() as sess: (cls_targets_out, cls_weights_out, reg_targets_out, reg_weights_out, match_out_0, match_out_1) = sess.run( [cls_targets, cls_weights, reg_targets, reg_weights] + [match.matched_column_indices() for match in match_list]) self.assertAllClose(cls_targets_out, exp_cls_targets) self.assertAllClose(cls_weights_out, exp_cls_weights) self.assertAllClose(reg_targets_out, exp_reg_targets) self.assertAllClose(reg_weights_out, exp_reg_weights) self.assertAllClose(match_out_0, exp_match_0) self.assertAllClose(match_out_1, exp_match_1)
def test_num_boxes_static(self): box_corners = [[10.0, 10.0, 20.0, 15.0], [0.2, 0.1, 0.5, 0.4]] boxes = box_list.BoxList(tf.constant(box_corners)) self.assertEquals(boxes.num_boxes_static(), 2) self.assertEquals(type(boxes.num_boxes_static()), int)
def multiclass_non_max_suppression(boxes, scores, score_thresh, iou_thresh, max_size_per_class, max_total_size=0, clip_window=None, change_coordinate_frame=False, masks=None, additional_fields=None, scope=None): """Multi-class version of non maximum suppression. This op greedily selects a subset of detection bounding boxes, pruning away boxes that have high IOU (intersection over union) overlap (> thresh) with already selected boxes. It operates independently for each class for which scores are provided (via the scores field of the input box_list), pruning boxes with score less than a provided threshold prior to applying NMS. Please note that this operation is performed on *all* classes, therefore any background classes should be removed prior to calling this function. Args: boxes: A [k, q, 4] float32 tensor containing k detections. `q` can be either number of classes or 1 depending on whether a separate box is predicted per class. scores: A [k, num_classes] float32 tensor containing the scores for each of the k detections. score_thresh: scalar threshold for score (low scoring boxes are removed). iou_thresh: scalar threshold for IOU (new boxes that have high IOU overlap with previously selected boxes are removed). max_size_per_class: maximum number of retained boxes per class. max_total_size: maximum number of boxes retained over all classes. By default returns all boxes retained after capping boxes per class. clip_window: A float32 tensor of the form [y_min, x_min, y_max, x_max] representing the window to clip and normalize boxes to before performing non-max suppression. change_coordinate_frame: Whether to normalize coordinates after clipping relative to clip_window (this can only be set to True if a clip_window is provided) masks: (optional) a [k, q, mask_height, mask_width] float32 tensor containing box masks. `q` can be either number of classes or 1 depending on whether a separate mask is predicted per class. additional_fields: (optional) If not None, a dictionary that maps keys to tensors whose first dimensions are all of size `k`. After non-maximum suppression, all tensors corresponding to the selected boxes will be added to resulting BoxList. scope: name scope. Returns: a BoxList holding M boxes with a rank-1 scores field representing corresponding scores for each box with scores sorted in decreasing order and a rank-1 classes field representing a class label for each box. If masks, keypoints, keypoint_heatmaps is not None, the boxlist will contain masks, keypoints, keypoint_heatmaps corresponding to boxes. Raises: ValueError: if iou_thresh is not in [0, 1] or if input boxlist does not have a valid scores field. """ if not 0 <= iou_thresh <= 1.0: raise ValueError('iou_thresh must be between 0 and 1') if scores.shape.ndims != 2: raise ValueError('scores field must be of rank 2') if scores.shape[1].value is None: raise ValueError('scores must have statically defined second ' 'dimension') if boxes.shape.ndims != 3: raise ValueError('boxes must be of rank 3.') if not (boxes.shape[1].value == scores.shape[1].value or boxes.shape[1].value == 1): raise ValueError('second dimension of boxes must be either 1 or equal ' 'to the second dimension of scores') if boxes.shape[2].value != 4: raise ValueError('last dimension of boxes must be of size 4.') if change_coordinate_frame and clip_window is None: raise ValueError( 'if change_coordinate_frame is True, then a clip_window' 'must be specified.') with tf.name_scope(scope, 'MultiClassNonMaxSuppression'): num_boxes = tf.shape(boxes)[0] num_scores = tf.shape(scores)[0] num_classes = scores.get_shape()[1] length_assert = tf.Assert(tf.equal(num_boxes, num_scores), [ 'Incorrect scores field length: actual vs expected.', num_scores, num_boxes ]) selected_boxes_list = [] per_class_boxes_list = tf.unstack(boxes, axis=1) if masks is not None: per_class_masks_list = tf.unstack(masks, axis=1) boxes_ids = (range(num_classes) if len(per_class_boxes_list) > 1 else [0] * num_classes) for class_idx, boxes_idx in zip(range(num_classes), boxes_ids): per_class_boxes = per_class_boxes_list[boxes_idx] boxlist_and_class_scores = box_list.BoxList(per_class_boxes) with tf.control_dependencies([length_assert]): class_scores = tf.reshape( tf.slice(scores, [0, class_idx], tf.stack([num_scores, 1])), [-1]) boxlist_and_class_scores.add_field(fields.BoxListFields.scores, class_scores) if masks is not None: per_class_masks = per_class_masks_list[boxes_idx] boxlist_and_class_scores.add_field(fields.BoxListFields.masks, per_class_masks) if additional_fields is not None: for key, tensor in additional_fields.items(): boxlist_and_class_scores.add_field(key, tensor) boxlist_filtered = box_list_ops.filter_greater_than( boxlist_and_class_scores, score_thresh) if clip_window is not None: boxlist_filtered = box_list_ops.clip_to_window( boxlist_filtered, clip_window) if change_coordinate_frame: boxlist_filtered = box_list_ops.change_coordinate_frame( boxlist_filtered, clip_window) max_selection_size = tf.minimum(max_size_per_class, boxlist_filtered.num_boxes()) selected_indices = tf.image.non_max_suppression( boxlist_filtered.get(), boxlist_filtered.get_field(fields.BoxListFields.scores), max_selection_size, iou_threshold=iou_thresh) nms_result = box_list_ops.gather(boxlist_filtered, selected_indices) nms_result.add_field(fields.BoxListFields.classes, (tf.zeros_like( nms_result.get_field(fields.BoxListFields.scores)) + class_idx)) selected_boxes_list.append(nms_result) selected_boxes = box_list_ops.concatenate(selected_boxes_list) sorted_boxes = box_list_ops.sort_by_field(selected_boxes, fields.BoxListFields.scores) if max_total_size: max_total_size = tf.minimum(max_total_size, sorted_boxes.num_boxes()) sorted_boxes = box_list_ops.gather(sorted_boxes, tf.range(max_total_size)) return sorted_boxes
def result_dict_for_single_example(image, key, detections, groundtruth=None, class_agnostic=False, scale_to_absolute=False): """Merges all detection and groundtruth information for a single example. Note that evaluation tools require classes that are 1-indexed, and so this function performs the offset. If `class_agnostic` is True, all output classes have label 1. Args: image: A single 4D image tensor of shape [1, H, W, C]. key: A single string tensor identifying the image. detections: A dictionary of detections, returned from DetectionModel.postprocess(). groundtruth: (Optional) Dictionary of groundtruth items, with fields: 'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in normalized coordinates. 'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes. 'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional) 'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional) 'groundtruth_difficult': [num_boxes] int64 tensor. (Optional) 'groundtruth_group_of': [num_boxes] int64 tensor. (Optional) 'groundtruth_instance_masks': 3D int64 tensor of instance masks (Optional). class_agnostic: Boolean indicating whether the detections are class-agnostic (i.e. binary). Default False. scale_to_absolute: Boolean indicating whether boxes, masks, keypoints should be scaled to absolute coordinates. Note that for IoU based evaluations, it does not matter whether boxes are expressed in absolute or relative coordinates. Default False. Returns: A dictionary with: 'original_image': A [1, H, W, C] uint8 image tensor. 'key': A string tensor with image identifier. 'detection_boxes': [max_detections, 4] float32 tensor of boxes, in normalized or absolute coordinates, depending on the value of `scale_to_absolute`. 'detection_scores': [max_detections] float32 tensor of scores. 'detection_classes': [max_detections] int64 tensor of 1-indexed classes. 'detection_masks': [max_detections, None, None] float32 tensor of binarized masks. (Only present if available in `detections`) 'groundtruth_boxes': [num_boxes, 4] float32 tensor of boxes, in normalized or absolute coordinates, depending on the value of `scale_to_absolute`. (Optional) 'groundtruth_classes': [num_boxes] int64 tensor of 1-indexed classes. (Optional) 'groundtruth_area': [num_boxes] float32 tensor of bbox area. (Optional) 'groundtruth_is_crowd': [num_boxes] int64 tensor. (Optional) 'groundtruth_difficult': [num_boxes] int64 tensor. (Optional) 'groundtruth_group_of': [num_boxes] int64 tensor. (Optional) 'groundtruth_instance_masks': 3D int64 tensor of instance masks (Optional). """ label_id_offset = 1 # Applying label id offset (b/63711816) input_data_fields = fields.InputDataFields() output_dict = { input_data_fields.original_image: image, input_data_fields.key: key, } detection_fields = fields.DetectionResultFields detection_boxes = detections[detection_fields.detection_boxes][0] output_dict[detection_fields.detection_boxes] = detection_boxes image_shape = tf.shape(image) if scale_to_absolute: absolute_detection_boxlist = box_list_ops.to_absolute_coordinates( box_list.BoxList(detection_boxes), image_shape[1], image_shape[2]) output_dict[detection_fields.detection_boxes] = ( absolute_detection_boxlist.get()) detection_scores = detections[detection_fields.detection_scores][0] output_dict[detection_fields.detection_scores] = detection_scores if class_agnostic: detection_classes = tf.ones_like(detection_scores, dtype=tf.int64) else: detection_classes = ( tf.to_int64(detections[detection_fields.detection_classes][0]) + label_id_offset) output_dict[detection_fields.detection_classes] = detection_classes if detection_fields.detection_masks in detections: detection_masks = detections[detection_fields.detection_masks][0] output_dict[detection_fields.detection_masks] = detection_masks if scale_to_absolute: # TODO: This should be done in model's postprocess # function ideally. detection_masks_reframed = ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, image_shape[1], image_shape[2]) detection_masks_reframed = tf.to_float( tf.greater(detection_masks_reframed, 0.5)) output_dict[ detection_fields.detection_masks] = detection_masks_reframed if detection_fields.detection_keypoints in detections: detection_keypoints = detections[ detection_fields.detection_keypoints][0] output_dict[detection_fields.detection_keypoints] = detection_keypoints if scale_to_absolute: absolute_detection_keypoints = keypoint_ops.scale( detection_keypoints, image_shape[1], image_shape[2]) output_dict[detection_fields.detection_keypoints] = ( absolute_detection_keypoints) if groundtruth: output_dict.update(groundtruth) if scale_to_absolute: groundtruth_boxes = groundtruth[ input_data_fields.groundtruth_boxes] absolute_gt_boxlist = box_list_ops.to_absolute_coordinates( box_list.BoxList(groundtruth_boxes), image_shape[1], image_shape[2]) output_dict[input_data_fields.groundtruth_boxes] = ( absolute_gt_boxlist.get()) # For class-agnostic models, groundtruth classes all become 1. if class_agnostic: groundtruth_classes = groundtruth[ input_data_fields.groundtruth_classes] groundtruth_classes = tf.ones_like(groundtruth_classes, dtype=tf.int64) output_dict[ input_data_fields.groundtruth_classes] = groundtruth_classes return output_dict
def graph_fn(): data = tf.constant([[0, 0, 1, 1], [1, 1, 2, 3], [3, 4, 5, 5]], tf.float32) boxes = box_list.BoxList(data) return boxes.num_boxes()
def graph_fn(rel_codes, anchors): anchors = box_list.BoxList(anchors) coder = faster_rcnn_box_coder.FasterRcnnBoxCoder() boxes = coder.decode(rel_codes, anchors) return boxes.get()
def graph_fn(boxes): boxes = box_list.BoxList(boxes) centers_sizes = boxes.get_center_coordinates_and_sizes() return centers_sizes
def ExtractKeypointDescriptor(image, layer_name, image_scales, iou, max_feature_num, abs_thres, model_fn): """Extract keypoint descriptor for input image. Args: image: A image tensor with shape [h, w, channels]. layer_name: The endpoint of feature extraction layer. image_scales: A 1D float tensor which contains the scales. iou: A float scalar denoting the IOU threshold for NMS. max_feature_num: An int tensor denoting the maximum selected feature points. abs_thres: A float tensor denoting the score threshold for feature selection. model_fn: Model function. Follows the signature: * Args: * `images`: Image tensor which is re-scaled. * `normalized_image`: Whether or not the images are normalized. * `reuse`: Whether or not the layer and its variables should be reused. * Returns: * `attention`: Attention score after the non-linearity. * `feature_map`: Feature map obtained from the ResNet model. Returns: boxes: [N, 4] float tensor which denotes the selected receptive box. N is the number of final feature points which pass through keypoint selection and NMS steps. feature_scales: [N] float tensor. It is the inverse of the input image scales such that larger image scales correspond to larger image regions, which is compatible with scale-space keypoint detection convention. features: [N, depth] float tensor with feature descriptors. scores: [N, 1] float tensor denoting the attention score. Raises: ValueError: If the layer_name is unsupported. """ original_image_shape_float = tf.gather(tf.to_float(tf.shape(image)), [0, 1]) image_tensor = NormalizePixelValues(image) image_tensor = tf.expand_dims(image_tensor, 0, name='image/expand_dims') # Feature depth and receptive field parameters for each network version. if layer_name == 'resnet_v1_50/block3': feature_depth = 1024 rf, stride, padding = [291.0, 32.0, 145.0] elif layer_name == 'resnet_v1_50/block4': feature_depth = 2048 rf, stride, padding = [483.0, 32.0, 241.0] else: raise ValueError('Unsupported layer_name.') def _ProcessSingleScale(scale_index, boxes, features, scales, scores, reuse=True): """Resize the image and run feature extraction and keypoint selection. This function will be passed into tf.while_loop() and be called repeatedly. The input boxes are collected from the previous iteration [0: scale_index -1]. We get the current scale by image_scales[scale_index], and run image resizing, feature extraction and keypoint selection. Then we will get a new set of selected_boxes for current scale. In the end, we concat the previous boxes with current selected_boxes as the output. Args: scale_index: A valid index in the image_scales. boxes: Box tensor with the shape of [N, 4]. features: Feature tensor with the shape of [N, depth]. scales: Scale tensor with the shape of [N]. scores: Attention score tensor with the shape of [N]. reuse: Whether or not the layer and its variables should be reused. Returns: scale_index: The next scale index for processing. boxes: Concatenated box tensor with the shape of [K, 4]. K >= N. features: Concatenated feature tensor with the shape of [K, depth]. scales: Concatenated scale tensor with the shape of [K]. scores: Concatenated attention score tensor with the shape of [K]. """ scale = tf.gather(image_scales, scale_index) new_image_size = tf.to_int32( tf.round(original_image_shape_float * scale)) resized_image = tf.image.resize_bilinear(image_tensor, new_image_size) attention, feature_map = model_fn(resized_image, normalized_image=True, reuse=reuse) rf_boxes = CalculateReceptiveBoxes( tf.shape(feature_map)[1], tf.shape(feature_map)[2], rf, stride, padding) # Re-project back to the original image space. rf_boxes = tf.divide(rf_boxes, scale) attention = tf.reshape(attention, [-1]) feature_map = tf.reshape(feature_map, [-1, feature_depth]) # Use attention score to select feature vectors. indices = tf.reshape(tf.where(attention >= abs_thres), [-1]) selected_boxes = tf.gather(rf_boxes, indices) selected_features = tf.gather(feature_map, indices) selected_scores = tf.gather(attention, indices) selected_scales = tf.ones_like(selected_scores, tf.float32) / scale # Concat with the previous result from different scales. boxes = tf.concat([boxes, selected_boxes], 0) features = tf.concat([features, selected_features], 0) scales = tf.concat([scales, selected_scales], 0) scores = tf.concat([scores, selected_scores], 0) return scale_index + 1, boxes, features, scales, scores output_boxes = tf.zeros([0, 4], dtype=tf.float32) output_features = tf.zeros([0, feature_depth], dtype=tf.float32) output_scales = tf.zeros([0], dtype=tf.float32) output_scores = tf.zeros([0], dtype=tf.float32) # Process the first scale separately, the following scales will reuse the # graph variables. (_, output_boxes, output_features, output_scales, output_scores) = _ProcessSingleScale(0, output_boxes, output_features, output_scales, output_scores, reuse=False) i = tf.constant(1, dtype=tf.int32) num_scales = tf.shape(image_scales)[0] keep_going = lambda j, boxes, features, scales, scores: tf.less( j, num_scales) (_, output_boxes, output_features, output_scales, output_scores) = tf.while_loop(cond=keep_going, body=_ProcessSingleScale, loop_vars=[ i, output_boxes, output_features, output_scales, output_scores ], shape_invariants=[ i.get_shape(), tf.TensorShape([None, 4]), tf.TensorShape([None, feature_depth]), tf.TensorShape([None]), tf.TensorShape([None]) ], back_prop=False) feature_boxes = box_list.BoxList(output_boxes) feature_boxes.add_field('features', output_features) feature_boxes.add_field('scales', output_scales) feature_boxes.add_field('scores', output_scores) nms_max_boxes = tf.minimum(max_feature_num, feature_boxes.num_boxes()) final_boxes = box_list_ops.non_max_suppression(feature_boxes, iou, nms_max_boxes) return (final_boxes.get(), final_boxes.get_field('scales'), final_boxes.get_field('features'), tf.expand_dims(final_boxes.get_field('scores'), 1))
def graph_fn(): corners = tf.constant([], shape=[0, 4], dtype=tf.float32) boxlist = box_list.BoxList(corners) coverage_box = box_list_ops.get_minimal_coverage_box(boxlist) return coverage_box