def _build_ssd_model(ssd_config, is_training): """Builds an SSD detection model based on the model config. Args: ssd_config: A ssd.proto object containing the config for the desired SSDMetaArch. is_training: True if this model is being built for training purposes. Returns: SSDMetaArch based on the config. Raises: ValueError: If ssd_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = ssd_config.num_classes # Feature extractor feature_extractor = _build_ssd_feature_extractor(ssd_config.feature_extractor, is_training) box_coder = box_coder_builder.build(ssd_config.box_coder) # matcher contains a method named "match" to return a "Match" Object. matcher = matcher_builder.build(ssd_config.matcher) # region_similarity_calculator.compare: return a tensor with shape [N, M] representing the IOA/IOU score, etc. region_similarity_calculator = sim_calc.build( ssd_config.similarity_calculator) # ssd_box_predictor.predict: returns a prediction dictionary ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build, ssd_config.box_predictor, is_training, num_classes) # anchor_generator: is MultipleGridAnchorGenerator object are always in normalized coordinate # Usage: anchor_generator.generate: Generates a collection of bounding boxes to be used as anchors. anchor_generator = anchor_generator_builder.build( ssd_config.anchor_generator) image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer) non_max_suppression_fn, score_conversion_fn = post_processing_builder.build( ssd_config.post_processing) (classification_loss, localization_loss, classification_weight, localization_weight, hard_example_miner) = losses_builder.build(ssd_config.loss) normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches return ssd_meta_arch.SSDMetaArch( is_training, anchor_generator, ssd_box_predictor, box_coder, feature_extractor, matcher, region_similarity_calculator, image_resizer_fn, non_max_suppression_fn, score_conversion_fn, classification_loss, localization_loss, classification_weight, localization_weight, normalize_loss_by_num_matches, hard_example_miner)
def _create_model(self, apply_hard_mining=True, normalize_loc_loss_by_codesize=False): is_training = False num_classes = 1 mock_anchor_generator = MockAnchorGenerator2x2() mock_box_predictor = test_utils.MockBoxPredictor( is_training, num_classes) mock_box_coder = test_utils.MockBoxCoder() fake_feature_extractor = FakeSSDFeatureExtractor() mock_matcher = test_utils.MockMatcher() region_similarity_calculator = sim_calc.IouSimilarity() encode_background_as_zeros = False def image_resizer_fn(image): return [tf.identity(image), tf.shape(image)] classification_loss = losses.WeightedSigmoidClassificationLoss() localization_loss = losses.WeightedSmoothL1LocalizationLoss() non_max_suppression_fn = functools.partial( post_processing.batch_multiclass_non_max_suppression, score_thresh=-20.0, iou_thresh=1.0, max_size_per_class=5, max_total_size=5) classification_loss_weight = 1.0 localization_loss_weight = 1.0 negative_class_weight = 1.0 normalize_loss_by_num_matches = False hard_example_miner = None if apply_hard_mining: # This hard example miner is expected to be a no-op. hard_example_miner = losses.HardExampleMiner( num_hard_examples=None, iou_threshold=1.0) code_size = 4 model = ssd_meta_arch.SSDMetaArch( is_training, mock_anchor_generator, mock_box_predictor, mock_box_coder, fake_feature_extractor, mock_matcher, region_similarity_calculator, encode_background_as_zeros, negative_class_weight, image_resizer_fn, non_max_suppression_fn, tf.identity, classification_loss, localization_loss, classification_loss_weight, localization_loss_weight, normalize_loss_by_num_matches, hard_example_miner, add_summaries=False, normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize) return model, num_classes, mock_anchor_generator.num_anchors( ), code_size
def setUp(self): """Set up mock SSD model. Here we set up a simple mock SSD model that will always predict 4 detections that happen to always be exactly the anchors that are set up in the above MockAnchorGenerator. Because we let max_detections=5, we will also always end up with an extra padded row in the detection results. """ is_training = False self._num_classes = 1 conv_hyperparams = {} self._conv_hyperparams = conv_hyperparams mock_anchor_generator = MockAnchorGenerator2x2() mock_box_predictor = test_utils.MockBoxPredictor( is_training, self._num_classes) mock_class_predictor = test_utils.MockClassPredictor( is_training, 7, self._conv_hyperparams, True, 0.5, 5, 0.0, False) mock_box_coder = test_utils.MockBoxCoder() fake_feature_extractor = FakeSSDFeatureExtractor() mock_matcher = test_utils.MockMatcher() region_similarity_calculator = sim_calc.IouSimilarity() def image_resizer_fn(image): return tf.identity(image) classification_loss = losses.WeightedSigmoidClassificationLoss( anchorwise_output=True) localization_loss = losses.WeightedSmoothL1LocalizationLoss( anchorwise_output=True) classification_loss_in_image_level = losses.WeightedSigmoidClassificationLossInImageLevel( ) non_max_suppression_fn = functools.partial( post_processing.batch_multiclass_non_max_suppression, score_thresh=-20.0, iou_thresh=1.0, max_size_per_class=5, max_total_size=5) classification_loss_weight = 1.0 localization_loss_weight = 1.0 classification_loss_in_image_level_weight = 1.0 normalize_loss_by_num_matches = False # This hard example miner is expected to be a no-op. hard_example_miner = losses.HardExampleMiner(num_hard_examples=None, iou_threshold=1.0) self._num_anchors = 4 self._code_size = 4 self._model = ssd_meta_arch.SSDMetaArch( is_training, mock_anchor_generator, mock_box_predictor, mock_class_predictor, mock_box_coder, fake_feature_extractor, mock_matcher, region_similarity_calculator, image_resizer_fn, non_max_suppression_fn, tf.identity, classification_loss, localization_loss, classification_loss_in_image_level, classification_loss_weight, localization_loss_weight, classification_loss_in_image_level_weight, normalize_loss_by_num_matches, hard_example_miner)
def _build_ssd_model(ssd_config, is_training, add_summaries): """Builds an SSD detection model based on the model config. Args: ssd_config: A ssd.proto object containing the config for the desired SSDMetaArch. is_training: True if this model is being built for training purposes. add_summaries: Whether to add tf summaries in the model. Returns: SSDMetaArch based on the config. Raises: ValueError: If ssd_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = ssd_config.num_classes # Feature extractor feature_extractor = _build_ssd_feature_extractor(ssd_config.feature_extractor, is_training) box_coder = box_coder_builder.build(ssd_config.box_coder) matcher = matcher_builder.build(ssd_config.matcher) region_similarity_calculator = sim_calc.build( ssd_config.similarity_calculator) encode_background_as_zeros = ssd_config.encode_background_as_zeros ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build, ssd_config.box_predictor, is_training, num_classes) anchor_generator = anchor_generator_builder.build( ssd_config.anchor_generator) image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer) non_max_suppression_fn, score_conversion_fn = post_processing_builder.build( ssd_config.post_processing) (classification_loss, localization_loss, classification_weight, localization_weight, hard_example_miner) = losses_builder.build(ssd_config.loss) normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches return ssd_meta_arch.SSDMetaArch( is_training, anchor_generator, ssd_box_predictor, box_coder, feature_extractor, matcher, region_similarity_calculator, encode_background_as_zeros, image_resizer_fn, non_max_suppression_fn, score_conversion_fn, classification_loss, localization_loss, classification_weight, localization_weight, normalize_loss_by_num_matches, hard_example_miner, add_summaries=add_summaries)
def _build_sssfd_model(sssfd_config, is_training, add_summaries, add_background_class=True): num_classes = sssfd_config.num_classes # Feature extractor feature_extractor = _build_sssfd_feature_extractor( feature_extractor_config=sssfd_config.feature_extractor, is_training=is_training) box_coder = box_coder_builder.build(sssfd_config.box_coder) matcher = matcher_builder.build(sssfd_config.matcher) region_similarity_calculator = sim_calc.build( sssfd_config.similarity_calculator) encode_background_as_zeros = sssfd_config.encode_background_as_zeros negative_class_weight = sssfd_config.negative_class_weight sssfd_box_predictor = box_predictor_builder.build( hyperparams_builder.build, sssfd_config.box_predictor, is_training, num_classes) anchor_generator = anchor_generator_builder.build( sssfd_config.anchor_generator) image_resizer_fn = image_resizer_builder.build(sssfd_config.image_resizer) non_max_suppression_fn, score_conversion_fn = post_processing_builder.build( sssfd_config.post_processing) (classification_loss, localization_loss, classification_weight, localization_weight, hard_example_miner, random_example_sampler) = losses_builder.build(sssfd_config.loss) normalize_loss_by_num_matches = sssfd_config.normalize_loss_by_num_matches normalize_loc_loss_by_codesize = sssfd_config.normalize_loc_loss_by_codesize return ssd_meta_arch.SSDMetaArch( is_training, anchor_generator, sssfd_box_predictor, box_coder, feature_extractor, matcher, region_similarity_calculator, encode_background_as_zeros, negative_class_weight, image_resizer_fn, non_max_suppression_fn, score_conversion_fn, classification_loss, localization_loss, classification_weight, localization_weight, normalize_loss_by_num_matches, hard_example_miner, add_summaries=add_summaries, normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize, freeze_batchnorm=sssfd_config.freeze_batchnorm, inplace_batchnorm_update=sssfd_config.inplace_batchnorm_update, add_background_class=add_background_class, random_example_sampler=random_example_sampler)
def _build_ssd_model(ssd_config, is_training, add_summaries, add_background_class=True): """Builds an SSD detection model based on the model config. Args: ssd_config: A ssd.proto object containing the config for the desired SSDMetaArch. is_training: True if this model is being built for training purposes. add_summaries: Whether to add tf summaries in the model. add_background_class: Whether to add an implicit background class to one-hot encodings of groundtruth labels. Set to false if using groundtruth labels with an explicit background class or using multiclass scores instead of truth in the case of distillation. Returns: SSDMetaArch based on the config. Raises: ValueError: If ssd_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = ssd_config.num_classes # Feature extractor feature_extractor = _build_ssd_feature_extractor( feature_extractor_config=ssd_config.feature_extractor, is_training=is_training) box_coder = box_coder_builder.build(ssd_config.box_coder) matcher = matcher_builder.build(ssd_config.matcher) region_similarity_calculator = sim_calc.build( ssd_config.similarity_calculator) encode_background_as_zeros = ssd_config.encode_background_as_zeros negative_class_weight = ssd_config.negative_class_weight ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build, ssd_config.box_predictor, is_training, num_classes) anchor_generator = anchor_generator_builder.build( ssd_config.anchor_generator) image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer) non_max_suppression_fn, score_conversion_fn = post_processing_builder.build( ssd_config.post_processing) (classification_loss, localization_loss, classification_weight, localization_weight, hard_example_miner, random_example_sampler) = losses_builder.build(ssd_config.loss) normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches normalize_loc_loss_by_codesize = ssd_config.normalize_loc_loss_by_codesize return ssd_meta_arch.SSDMetaArch( is_training, anchor_generator, ssd_box_predictor, box_coder, feature_extractor, matcher, region_similarity_calculator, encode_background_as_zeros, negative_class_weight, image_resizer_fn, non_max_suppression_fn, score_conversion_fn, classification_loss, localization_loss, classification_weight, localization_weight, normalize_loss_by_num_matches, hard_example_miner, add_summaries=add_summaries, normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize, freeze_batchnorm=ssd_config.freeze_batchnorm, inplace_batchnorm_update=ssd_config.inplace_batchnorm_update, add_background_class=add_background_class, random_example_sampler=random_example_sampler)
def _build_ssd_model(ssd_config, is_training): """Builds an SSD detection model based on the model config. Args: ssd_config: A ssd.proto object containing the config for the desired SSDMetaArch. is_training: True if this model is being built for training purposes. Returns: SSDMetaArch based on the config. Raises: ValueError: If ssd_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = ssd_config.num_classes # Feature extractor feature_extractor = _build_ssd_feature_extractor( ssd_config.feature_extractor, is_training) box_coder = box_coder_builder.build(ssd_config.box_coder) matcher = matcher_builder.build(ssd_config.matcher) region_similarity_calculator = sim_calc.build( ssd_config.similarity_calculator) ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build, ssd_config.box_predictor, is_training, num_classes) anchor_generator = anchor_generator_builder.build( ssd_config.anchor_generator) image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer) non_max_suppression_fn, score_conversion_fn = post_processing_builder.build( ssd_config.post_processing) (classification_loss, localization_loss, classification_weight, localization_weight, hard_example_miner) = losses_builder.build(ssd_config.loss) normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches common_kwargs = { 'is_training': is_training, 'anchor_generator': anchor_generator, 'box_predictor': ssd_box_predictor, 'box_coder': box_coder, 'feature_extractor': feature_extractor, 'matcher': matcher, 'region_similarity_calculator': region_similarity_calculator, 'image_resizer_fn': image_resizer_fn, 'non_max_suppression_fn': non_max_suppression_fn, 'score_conversion_fn': score_conversion_fn, 'classification_loss': classification_loss, 'localization_loss': localization_loss, 'classification_loss_weight': classification_weight, 'localization_loss_weight': localization_weight, 'normalize_loss_by_num_matches': normalize_loss_by_num_matches, 'hard_example_miner': hard_example_miner } if isinstance(anchor_generator, yolo_grid_anchor_generator.YoloGridAnchorGenerator): return yolo_meta_arch.YOLOMetaArch(**common_kwargs) else: return ssd_meta_arch.SSDMetaArch(**common_kwargs)
def _create_model(self, apply_hard_mining=True, normalize_loc_loss_by_codesize=False, add_background_class=True, random_example_sampling=False, weight_regression_loss_by_score=False, use_expected_classification_loss_under_sampling=False, minimum_negative_sampling=1, desired_negative_sampling_ratio=3, use_keras=False): is_training = False num_classes = 1 mock_anchor_generator = MockAnchorGenerator2x2() if use_keras: mock_box_predictor = test_utils.MockKerasBoxPredictor( is_training, num_classes) else: mock_box_predictor = test_utils.MockBoxPredictor( is_training, num_classes) mock_box_coder = test_utils.MockBoxCoder() if use_keras: fake_feature_extractor = FakeSSDKerasFeatureExtractor() else: fake_feature_extractor = FakeSSDFeatureExtractor() mock_matcher = test_utils.MockMatcher() region_similarity_calculator = sim_calc.IouSimilarity() encode_background_as_zeros = False def image_resizer_fn(image): return [tf.identity(image), tf.shape(image)] classification_loss = losses.WeightedSigmoidClassificationLoss() localization_loss = losses.WeightedSmoothL1LocalizationLoss() non_max_suppression_fn = functools.partial( post_processing.batch_multiclass_non_max_suppression, score_thresh=-20.0, iou_thresh=1.0, max_size_per_class=5, max_total_size=5) classification_loss_weight = 1.0 localization_loss_weight = 1.0 negative_class_weight = 1.0 normalize_loss_by_num_matches = False hard_example_miner = None if apply_hard_mining: # This hard example miner is expected to be a no-op. hard_example_miner = losses.HardExampleMiner( num_hard_examples=None, iou_threshold=1.0) random_example_sampler = None if random_example_sampling: random_example_sampler = sampler.BalancedPositiveNegativeSampler( positive_fraction=0.5) target_assigner_instance = target_assigner.TargetAssigner( region_similarity_calculator, mock_matcher, mock_box_coder, negative_class_weight=negative_class_weight, weight_regression_loss_by_score=weight_regression_loss_by_score) expected_classification_loss_under_sampling = None if use_expected_classification_loss_under_sampling: expected_classification_loss_under_sampling = functools.partial( ops.expected_classification_loss_under_sampling, minimum_negative_sampling=minimum_negative_sampling, desired_negative_sampling_ratio=desired_negative_sampling_ratio ) code_size = 4 model = ssd_meta_arch.SSDMetaArch( is_training, mock_anchor_generator, mock_box_predictor, mock_box_coder, fake_feature_extractor, mock_matcher, region_similarity_calculator, encode_background_as_zeros, negative_class_weight, image_resizer_fn, non_max_suppression_fn, tf.identity, classification_loss, localization_loss, classification_loss_weight, localization_loss_weight, normalize_loss_by_num_matches, hard_example_miner, target_assigner_instance=target_assigner_instance, add_summaries=False, normalize_loc_loss_by_codesize=normalize_loc_loss_by_codesize, freeze_batchnorm=False, inplace_batchnorm_update=False, add_background_class=add_background_class, random_example_sampler=random_example_sampler, expected_classification_loss_under_sampling= expected_classification_loss_under_sampling) return model, num_classes, mock_anchor_generator.num_anchors( ), code_size
def _build_ssd_model(ssd_config, is_training): """Builds an SSD detection model based on the model config. Args: ssd_config: A ssd.proto object containing the config for the desired SSDMetaArch. is_training: True if this model is being built for training purposes. Returns: SSDMetaArch based on the config. Raises: ValueError: If ssd_config.type is not recognized (i.e. not registered in model_class_map). """ num_classes = ssd_config.num_classes #number of clases # Feature extractor feature_extractor = _build_ssd_feature_extractor(ssd_config.feature_extractor, #we use ssd_mobilenet_v1 as the feature extractor is_training) #set the class in ssd_mobilenr_v1_feature_extractor amd ssd_meta+arch.py #when taking the regression loss we are working with some transorfmation. That means our predictors will predict 4 cordinates and those codinates should be regressed with some kind embedding which was made with ground truth boxes and default boxes , then after getting those we docode them for real images box_coder = box_coder_builder.build(ssd_config.box_coder) #set en encoding w.r.t ground truth boxes and achor boxes . The output creating with this object will then regressed with the predicted onece. chenck equation 2 in the ssd paper matcher = matcher_builder.build(ssd_config.matcher) #matching the predicted to ground trunth- Builds a matcher object based on the matcher config #in obove object matching is done with default boxes and ground truth boxes , that's how xij value in the paper obtained . region_similarity_calculator = sim_calc.build( #how to calculate the similarity parameter is iou . ssd_config.similarity_calculator) ssd_box_predictor = box_predictor_builder.build(hyperparams_builder.build, #This will take care of the convolutional kernal ssd_config.box_predictor, is_training, num_classes) #this returns a box_predictor object anchor_generator = anchor_generator_builder.build( #pass an instance or object where we can create ancho boxes for differen featuremaps ssd_config.anchor_generator) image_resizer_fn = image_resizer_builder.build(ssd_config.image_resizer) #this is imortatnt we use fixed_shape_resizer non_max_suppression_fn, score_conversion_fn = post_processing_builder.build( #this is to work with NMS supression output ssd_config.post_processing) #score conversion function will convert logits to probabilities (classification_loss, localization_loss, classification_weight, localization_weight, hard_example_miner) = losses_builder.build(ssd_config.loss) #now the loss for hard examples these outputs are objects normalize_loss_by_num_matches = ssd_config.normalize_loss_by_num_matches # we devide by the matching acnhorboxes return ssd_meta_arch.SSDMetaArch( #here we initialized a object of ssd_meta_arch which will be used in trainign is_training, anchor_generator, ssd_box_predictor, box_coder, feature_extractor, matcher, region_similarity_calculator, image_resizer_fn, non_max_suppression_fn, score_conversion_fn, classification_loss, localization_loss, classification_weight, localization_weight, normalize_loss_by_num_matches, hard_example_miner)