def testParseFloat(self): float_array_val = [1.5, 1.4, 2.0] features = {'floats': self._FloatFeature(float_array_val)} example = tf.train.Example(features=tf.train.Features(feature=features)) parser = tf_example_parser.FloatParser('floats') result = parser.parse(example) self.assertIsNotNone(result) np_testing.assert_almost_equal(result, float_array_val) parser = tf_example_parser.StringParser('another_floats') result = parser.parse(example) self.assertIsNone(result)
def __init__(self): self.items_to_handlers = { fields.DetectionResultFields.key: StringParser(fields.TfExampleFields.source_id), # Object detections. fields.DetectionResultFields.detection_boxes: (tf_example_parser.BoundingBoxParser( fields.TfExampleFields.detection_bbox_xmin, fields.TfExampleFields.detection_bbox_ymin, fields.TfExampleFields.detection_bbox_xmax, fields.TfExampleFields.detection_bbox_ymax)), fields.DetectionResultFields.detection_classes: (tf_example_parser.Int64Parser( fields.TfExampleFields.detection_class_label)), fields.DetectionResultFields.detection_scores: (tf_example_parser.FloatParser( fields.TfExampleFields.detection_score)), } self.optional_items_to_handlers = {}