def testGetCorrectMatchedRowIndices(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_row_indices = [3, 1, 0, 5] matched_row_indices = match.matched_row_indices() self.assertEquals(matched_row_indices.dtype, tf.int32) with self.test_session() as sess: matched_row_inds = sess.run(matched_row_indices) self.assertAllEqual(matched_row_inds, expected_row_indices)
def test_get_correct_ignored_column_indices(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_column_indices = [6] ignored_column_indices = match.ignored_column_indices() self.assertEquals(ignored_column_indices.dtype, tf.int32) with self.test_session() as sess: ignored_column_indices = sess.run(ignored_column_indices) self.assertAllEqual(ignored_column_indices, expected_column_indices)
def testGetCorrectUnmatchedColumnIndices(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_column_indices = [2, 4] unmatched_column_indices = match.unmatched_column_indices() self.assertEquals(unmatched_column_indices.dtype, tf.int32) with self.test_session() as sess: unmatched_column_indices = sess.run(unmatched_column_indices) self.assertAllEqual(unmatched_column_indices, expected_column_indices)
def test_get_correct_matched_column_indicator(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) expected_column_indicator = [ True, True, False, True, False, True, False ] matched_column_indicator = match.matched_column_indicator() self.assertEquals(matched_column_indicator.dtype, tf.bool) with self.test_session() as sess: matched_column_indicator = sess.run(matched_column_indicator) self.assertAllEqual(matched_column_indicator, expected_column_indicator)
def test_scalar_gather_based_on_match(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) input_tensor = tf.constant([0, 1, 2, 3, 4, 5, 6, 7], dtype=tf.float32) expected_gathered_tensor = [3, 1, 100, 0, 100, 5, 200] match = matcher.Match(match_results) gathered_tensor = match.gather_based_on_match(input_tensor, unmatched_value=100., ignored_value=200.) self.assertEquals(gathered_tensor.dtype, tf.float32) with self.test_session(): gathered_tensor_out = gathered_tensor.eval() self.assertAllEqual(expected_gathered_tensor, gathered_tensor_out)
def test_multidimensional_gather_based_on_match(self): match_results = tf.constant([1, -1, -2]) input_tensor = tf.constant([[0, 0.5, 0, 0.5], [0, 0, 0.5, 0.5]], dtype=tf.float32) expected_gathered_tensor = [[0, 0, 0.5, 0.5], [0, 0, 0, 0], [0, 0, 0, 0]] match = matcher.Match(match_results) gathered_tensor = match.gather_based_on_match( input_tensor, unmatched_value=tf.zeros(4), ignored_value=tf.zeros(4)) self.assertEquals(gathered_tensor.dtype, tf.float32) with self.test_session(): gathered_tensor_out = gathered_tensor.eval() self.assertAllEqual(expected_gathered_tensor, gathered_tensor_out)
def testEnforceNegativesPerPositiveRatio(self): location_losses = tf.constant( [[100, 90, 80, 0, 1, 2, 3, 10, 20, 100, 20, 3]], tf.float32) cls_losses = tf.constant([[0, 0, 100, 0, 90, 70, 0, 60, 0, 17, 13, 0]], tf.float32) box_corners = tf.constant( [[0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.5, 0.1], [0.0, 0.0, 0.6, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 0.8, 0.1], [0.0, 0.0, 0.2, 0.1], [0.0, 0.0, 1.0, 0.1], [0.0, 0.0, 1.1, 0.1], [0.0, 0.0, 0.2, 0.1]], tf.float32) match_results = tf.constant( [2, -1, 0, -1, -1, 1, -1, -1, -1, -1, -1, 3]) match_list = [matcher.Match(match_results)] decoded_boxlist_list = [] decoded_boxlist_list.append(box_list.BoxList(box_corners)) max_negatives_per_positive_list = [0.0, 0.5, 1.0, 1.5, 10] exp_loc_loss_list = [ 80 + 2, 80 + 1 + 2, 80 + 1 + 2 + 10, 80 + 1 + 2 + 10 + 100, 80 + 1 + 2 + 10 + 100 + 20 ] exp_cls_loss_list = [ 100 + 70, 100 + 90 + 70, 100 + 90 + 70 + 60, 100 + 90 + 70 + 60 + 17, 100 + 90 + 70 + 60 + 17 + 13 ] for max_negatives_per_positive, exp_loc_loss, exp_cls_loss in zip( max_negatives_per_positive_list, exp_loc_loss_list, exp_cls_loss_list): loss_op = losses.HardExampleMiner( num_hard_examples=None, iou_threshold=0.9999, loss_type='cls', cls_loss_weight=1, loc_loss_weight=1, max_negatives_per_positive=max_negatives_per_positive) (loc_loss, cls_loss) = loss_op(location_losses, cls_losses, decoded_boxlist_list, match_list) loss_op.summarize() with self.test_session() as sess: loc_loss_output = sess.run(loc_loss) self.assertAllClose(loc_loss_output, exp_loc_loss) cls_loss_output = sess.run(cls_loss) self.assertAllClose(cls_loss_output, exp_cls_loss)
def test_multidimensional_gather_based_on_match_with_matmul_gather_op( self): match_results = tf.constant([1, -1, -2]) input_tensor = tf.constant([[0, 0.5, 0, 0.5], [0, 0, 0.5, 0.5]], dtype=tf.float32) expected_gathered_tensor = [[0, 0, 0.5, 0.5], [0, 0, 0, 0], [0, 0, 0, 0]] match = matcher.Match(match_results, use_matmul_gather=True) gathered_tensor = match.gather_based_on_match( input_tensor, unmatched_value=tf.zeros(4), ignored_value=tf.zeros(4)) self.assertEquals(gathered_tensor.dtype, tf.float32) with self.test_session() as sess: self.assertTrue( all([ op.name is not 'Gather' for op in sess.graph.get_operations() ])) gathered_tensor_out = gathered_tensor.eval() self.assertAllEqual(expected_gathered_tensor, gathered_tensor_out)
def test_all_columns_accounted_for(self): # Note: deliberately setting to small number so not always # all possibilities appear (matched, unmatched, ignored) num_matches = 10 match_results = tf.random_uniform([num_matches], minval=-2, maxval=5, dtype=tf.int32) match = matcher.Match(match_results) matched_column_indices = match.matched_column_indices() unmatched_column_indices = match.unmatched_column_indices() ignored_column_indices = match.ignored_column_indices() with self.test_session() as sess: matched, unmatched, ignored = sess.run([ matched_column_indices, unmatched_column_indices, ignored_column_indices ]) all_indices = np.hstack((matched, unmatched, ignored)) all_indices_sorted = np.sort(all_indices) self.assertAllEqual(all_indices_sorted, np.arange(num_matches, dtype=np.int32))
def test_get_correct_counts(self): match_results = tf.constant([3, 1, -1, 0, -1, 5, -2]) match = matcher.Match(match_results) exp_num_matched_columns = 4 exp_num_unmatched_columns = 2 exp_num_ignored_columns = 1 num_matched_columns = match.num_matched_columns() num_unmatched_columns = match.num_unmatched_columns() num_ignored_columns = match.num_ignored_columns() self.assertEquals(num_matched_columns.dtype, tf.int32) self.assertEquals(num_unmatched_columns.dtype, tf.int32) self.assertEquals(num_ignored_columns.dtype, tf.int32) with self.test_session() as sess: (num_matched_columns_out, num_unmatched_columns_out, num_ignored_columns_out) = sess.run([ num_matched_columns, num_unmatched_columns, num_ignored_columns ]) self.assertAllEqual(num_matched_columns_out, exp_num_matched_columns) self.assertAllEqual(num_unmatched_columns_out, exp_num_unmatched_columns) self.assertAllEqual(num_ignored_columns_out, exp_num_ignored_columns)