def setUp(self): num_groundtruth_classes = 1 matching_iou_threshold_high_iou = 0.5 matching_iou_threshold_low_iou = 0.1 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 self.eval_high_iou = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes, matching_iou_threshold_high_iou, nms_iou_threshold, nms_max_output_boxes) self.eval_low_iou = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes, matching_iou_threshold_low_iou, nms_iou_threshold, nms_max_output_boxes) self.detected_boxes = np.array( [[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3]], dtype=float) self.detected_scores = np.array([0.6, 0.8, 0.5], dtype=float) detected_masks_0 = np.array([[0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_1 = np.array([[1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_2 = np.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8) self.detected_masks = np.stack( [detected_masks_0, detected_masks_1, detected_masks_2], axis=0)
def __init__(self, num_groundtruth_classes, matching_iou_threshold=0.5, nms_iou_threshold=1.0, nms_max_output_boxes=10000, use_weighted_mean_ap=False, label_id_offset=0, group_of_weight=0.0): if num_groundtruth_classes < 1: raise ValueError( 'Need at least 1 groundtruth class for evaluation.') self.per_image_eval = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes=num_groundtruth_classes, matching_iou_threshold=matching_iou_threshold, nms_iou_threshold=nms_iou_threshold, nms_max_output_boxes=nms_max_output_boxes, group_of_weight=group_of_weight) self.group_of_weight = group_of_weight self.num_class = num_groundtruth_classes self.use_weighted_mean_ap = use_weighted_mean_ap self.label_id_offset = label_id_offset self.groundtruth_boxes = {} self.groundtruth_class_labels = {} self.groundtruth_masks = {} self.groundtruth_is_difficult_list = {} self.groundtruth_is_group_of_list = {} self.num_gt_instances_per_class = np.zeros(self.num_class, dtype=float) self.num_gt_imgs_per_class = np.zeros(self.num_class, dtype=int) self._initialize_detections()
def test_tp_fp(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array( [[0, 0, 1, 1], [10, 10, 5, 5], [0, 0, 2, 2], [5, 10, 10, 5], [10, 5, 5, 10], [0, 0, 3, 3]], dtype=float) detected_scores = np.array([0.8, 0.1, 0.8, 0.9, 0.7, 0.8], dtype=float) detected_class_labels = np.array([0, 1, 1, 2, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3.5, 3.5]], dtype=float) groundtruth_class_labels = np.array([0, 2], dtype=int) groundtruth_groundtruth_is_difficult_list = np.zeros(2, dtype=float) groundtruth_groundtruth_is_group_of_list = np.array([False, False], dtype=bool) scores, tp_fp_labels, _ = eval1.compute_object_detection_metrics( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels, groundtruth_groundtruth_is_difficult_list, groundtruth_groundtruth_is_group_of_list) expected_scores = [np.array([0.8], dtype=float)] * 3 expected_tp_fp_labels = [ np.array([True]), np.array([False]), np.array([True]) ] for i in range(len(expected_scores)): self.assertTrue(np.allclose(expected_scores[i], scores[i])) self.assertTrue( np.array_equal(expected_tp_fp_labels[i], tp_fp_labels[i]))
def setUp(self): num_groundtruth_classes = 1 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 self.group_of_weight = 0.5 self.eval = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes, self.group_of_weight) self.detected_boxes = np.array( [[0, 0, 1, 1], [0, 0, 2, 1], [0, 0, 3, 1]], dtype=float) self.detected_scores = np.array([0.8, 0.6, 0.5], dtype=float) detected_masks_0 = np.array([[0, 1, 1, 0], [0, 0, 1, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_1 = np.array([[1, 0, 0, 0], [1, 1, 0, 0], [0, 0, 0, 0]], dtype=np.uint8) detected_masks_2 = np.array([[0, 0, 0, 0], [0, 1, 1, 0], [0, 1, 0, 0]], dtype=np.uint8) self.detected_masks = np.stack( [detected_masks_0, detected_masks_1, detected_masks_2], axis=0) self.groundtruth_boxes = np.array( [[0, 0, 1, 1], [0, 0, 5, 5], [10, 10, 20, 20]], dtype=float) groundtruth_masks_0 = np.array( [[1, 0, 0, 0], [1, 0, 0, 0], [1, 0, 0, 0]], dtype=np.uint8) groundtruth_masks_1 = np.array( [[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0]], dtype=np.uint8) groundtruth_masks_2 = np.array( [[0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 0, 0]], dtype=np.uint8) self.groundtruth_masks = np.stack( [groundtruth_masks_0, groundtruth_masks_1, groundtruth_masks_2], axis=0)
def test_compute_corloc_with_very_large_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.9 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation( num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array( [[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array( [[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 0], dtype=int) self.assertTrue( np.array_equal(expected_result, is_class_correctly_detected_in_image))