示例#1
0
def predict_height():
    if request.method == 'POST':
        if 'file' not in request.files:
            return 'Error: No file part, please try again'
        file = request.files['file']
        if file.filename == '':
            return 'Error: No file name, please try again'
        if file and allowed_file(file.filename):
            K.clear_session()
            img, result_df = object_detector([file.filename], [file])
            if len(img) == 0:
                return 'Error: Image could not be used.'

            # format image for return in html
            img = img[file.filename]
            tag = create_tag(img)

            # scale and clean data
            scaler = load('models/scaler.joblib')
            try:
                result_df['banana_box'] = result_df[[
                    'banana_box_point1', 'banana_box_point2',
                    'banana_box_point3', 'banana_box_point4'
                ]].mean(axis=1)
                result_df['person_box'] = result_df[[
                    'person_box_point1', 'person_box_point2',
                    'person_box_point3', 'person_box_point4'
                ]].mean(axis=1)
                X = scaler.transform(result_df.drop(columns=['filename']))
            except:
                return '''
                <!DOCTYPE html>
                <img src={0} class="img-responsive" width='400'>
                <p>Error: A prediction could not be made using this image
                <br>
                <i>Either a banana or person could not be detected.</i></p>'''.format(
                    tag)

            # make final prediction with random forest
            model = load('models/randomforest.joblib')
            pred = model.predict(X)[0]
            ft = int(pred // 12)
            inch = round(pred % 12, 1)
            return render_template('prediction_answer.html',
                                   variable=[f'{ft} ft {inch} in', '', tag])
        else:
            return redirect(request.url)
    return render_template('prediction.html',
                           Title='Height Prediction with Object Detection')
示例#2
0
def process(args):

    objects_detected = dict()

    """
    #tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
    #tracker_type = tracker_types[2]
    #tracker = None

    
    if tracker_type == 'BOOSTING':
        tracker = cv.TrackerBoosting_create()
    if tracker_type == 'MIL':
        tracker = cv.TrackerMIL_create()
    if tracker_type == 'KCF':
        tracker = cv.TrackerKCF_create()
    if tracker_type == 'TLD':
        tracker = cv.TrackerTLD_create()
    if tracker_type == 'MEDIANFLOW':
        tracker = cv.TrackerMedianFlow_create()
    if tracker_type == 'GOTURN':
        tracker = cv.TrackerGOTURN_create()
    """

    predictor = object_detector(args.model, args.config)
    stream = cv.VideoCapture(args.input if args.input else 0)
    window_name = "Tracking in progress"
    cv.namedWindow(window_name, cv.WINDOW_NORMAL)
    cv.setWindowProperty(window_name, cv.WND_PROP_AUTOSIZE, cv.WINDOW_AUTOSIZE)        
    cv.moveWindow(window_name,10,10)
    

    if args.output:
        _, test_frame = stream.read()
        height = test_frame.shape[0]
        width = test_frame.shape[1]
        fourcc = cv.VideoWriter_fourcc(*'XVID')
        #out = cv.VideoWriter(args.output,fourcc, 20.0, (640,480))
        out = cv.VideoWriter(args.output,fourcc, 20.0, (width,height))
        failTolerance = 0

    if args.classes:
        with open(args.classes, 'rt') as f:
            classes = f.read().rstrip('\n').split('\n')
    else:
        classes = list(np.arange(0,100))

    stream, objects_detected, objects_list, trackers_dict = intermediate_detections(stream, predictor, args.thr, classes)    

    while stream.isOpened():
    
        grabbed, frame = stream.read()

        if not grabbed:
            break

        timer = cv.getTickCount()

        """
        #Did not use OpenCV's multitracker because of the restrivtive nature of its Python counterpart.
        #If one tracker in the multitracker fails, there's no way to find out which tracker failed.
        #There's no easy way to delete individual trackers in the multitracker object.
        #Even when multitracker fails,  bboxes will have old values, but 'ok' will be false
        
        #if len(objects_list) > 0:
            #ok, bboxes = multi_tracker.update(frame)
        #bboxes = multi_tracker.getObjects()
        #ok = multi_tracker.empty()
        """
        
        print('Tracking - ',objects_list)

        if len(objects_detected) > 0:
            del_items = []
            for obj,tracker in trackers_dict.items():
                ok, bbox = tracker.update(frame)
                if ok:
                    objects_detected[obj][0] = bbox
                else:
                    print('Failed to track ', obj)
                    del_items.append(obj) 
        
            for item in del_items:            
                trackers_dict.pop(item)
                objects_detected.pop(item)
                
        fps = cv.getTickFrequency() / (cv.getTickCount() - timer)

        if len(objects_detected) > 0:
            drawPred(frame, objects_detected)
            # Display FPS on frame
            cv.putText(frame, "FPS : " + str(int(fps)), (100,50), cv.FONT_HERSHEY_SIMPLEX, 0.75, (50,170,50), 2)

        else:
            cv.putText(frame, 'Tracking Failure. Trying to detect more objects', (50,80), cv.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2)
            stream, objects_detected, objects_list, trackers_dict = intermediate_detections(stream, predictor, args.thr, classes)   
            
        
        # Display result
        #If resolution is too big, resize the video
        if frame.shape[1] > 1240:
            cv.imshow(window_name, cv.resize(frame, (1240, 960)))
        else:
            cv.imshow(window_name, frame)
        
        #Write to output file
        if args.output:
            out.write(frame)
        k = cv.waitKey(1) & 0xff

        #Force detect new objects if 'q' is pressed
        if k == ord('q'):
            print('Refreshing. Detecting New objects')
            cv.putText(frame, 'Refreshing. Detecting New objects', (100,80), cv.FONT_HERSHEY_SIMPLEX, 0.75,(0,0,255),2)
            stream, objects_detected, objects_list, trackers_dict = intermediate_detections(stream, predictor, args.thr, classes)  
            
        # Exit if ESC pressed    
        if k == 27 : break 

    stream.release()
    if args.output:
        out.release()
    cv.destroyAllWindows()
示例#3
0
def process(args):

    objects_detected = dict()
    tracker_types = ['BOOSTING', 'MIL', 'KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
    tracker_type = tracker_types[2]
    tracker = None
    """
    if tracker_type == 'BOOSTING':
        tracker = cv.TrackerBoosting_create()
    if tracker_type == 'MIL':
        tracker = cv.TrackerMIL_create()
    if tracker_type == 'KCF':
        tracker = cv.TrackerKCF_create()
    if tracker_type == 'TLD':
        tracker = cv.TrackerTLD_create()
    if tracker_type == 'MEDIANFLOW':
        tracker = cv.TrackerMedianFlow_create()
    if tracker_type == 'GOTURN':
        tracker = cv.TrackerGOTURN_create()
    """
    predictor = object_detector(args.model, args.config)
    multi_tracker = cv.MultiTracker_create()
    stream = cv.VideoCapture(args.input if args.input else 0)
    window_name = "Tracking in progress"
    cv.namedWindow(window_name, cv.WINDOW_NORMAL)
    cv.setWindowProperty(window_name, cv.WND_PROP_AUTOSIZE, cv.WINDOW_AUTOSIZE)
    cv.moveWindow(window_name, 10, 10)

    if args.output:
        _, test_frame = stream.read()
        height = test_frame.shape[0]
        width = test_frame.shape[1]
        fourcc = cv.VideoWriter_fourcc(*'XVID')
        out = cv.VideoWriter(args.output, fourcc, 20.0, (width, height))
        failTolerance = 0

    if args.classes:
        with open(args.classes, 'rt') as f:
            classes = f.read().rstrip('\n').split('\n')
    else:
        classes = list(np.arange(0, 100))

    stream, objects_detected, objects_list, multi_tracker = intermediate_detections(
        stream, predictor, multi_tracker, tracker, args.thr, classes)

    while stream.isOpened():

        grabbed, frame = stream.read()
        if not grabbed:
            break

        timer = cv.getTickCount()

        if len(objects_list) > 0:
            ok, bboxes = multi_tracker.update(frame)

        fps = cv.getTickFrequency() / (cv.getTickCount() - timer)

        print(bboxes, ' --- ', ok)

        if ok and len(bboxes) > 0:
            drawPred(frame, bboxes, objects_detected)
            # Display FPS on frame
            cv.putText(frame, "FPS : " + str(int(fps)), (100, 50),
                       cv.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2)

        else:
            cv.putText(frame,
                       'Tracking Failure. Trying to detect more objects',
                       (50, 80), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
            stream, objects_detected, objects_list, multi_tracker = intermediate_detections(
                stream, predictor, multi_tracker, tracker, args.thr, classes)

        # Display result
        #If resolution is too big, resize the video
        if frame.shape[1] > 1240:
            cv.imshow(window_name, cv.resize(frame, (1240, 960)))
        else:
            cv.imshow(window_name, frame)

        #Write to output file
        if args.output:
            out.write(frame)
        k = cv.waitKey(1) & 0xff

        #Force detect new objects if 'q' is pressed
        if k == ord('q'):
            print('Refreshing. Detecting New objects')
            cv.putText(frame, 'Refreshing. Detecting New objects', (100, 80),
                       cv.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
            stream, objects_detected, objects_list, multi_tracker = intermediate_detections(
                stream, predictor, multi_tracker, tracker, args.thr, classes)

        # Exit if ESC pressed
        if k == 27: break

    stream.release()
    if args.output:
        out.release()
    cv.destroyAllWindows()
示例#4
0
def process(args):
    objects_detected = dict()
    cv.setUseOptimized(onoff=True)
    tracker = cv.TrackerKCF_create()

    predictor = object_detector(args.model, args.config)
    stream = cv.VideoCapture(args.input if args.input else 0)
    window_name = "Tracking in progress"
    cv.namedWindow(window_name, cv.WINDOW_NORMAL)
    cv.setWindowProperty(window_name, cv.WND_PROP_AUTOSIZE, cv.WINDOW_AUTOSIZE)
    cv.moveWindow(window_name, 10, 10)

    if args.output:
        _, test_frame = stream.read()
        height = test_frame.shape[0]
        width = test_frame.shape[1]
        fourcc = cv.VideoWriter_fourcc(*'XVID')
        out = cv.VideoWriter(args.output, fourcc, 20.0, (width, height))

    if args.classes:
        with open(args.classes, 'rt') as f:
            classes = f.read().rstrip('\n').split('\n')
    else:
        classes = list(np.arange(0, 100))

    stream, objects_detected, objects_list, trackers_dict = intermediate_detections(
        stream, predictor, args.thr, classes)

    while stream.isOpened():

        grabbed, frame = stream.read()

        if not grabbed:
            break

        timer = cv.getTickCount()

        if len(objects_detected) > 0:
            del_items = []
            for objectt, tracker in trackers_dict.items():
                positive, bbox = tracker.update(frame)
                if positive:
                    objects_detected[objectt][0] = bbox
                else:
                    print('Failed to track ', objectt)
                    del_items.append(objectt)

            for item in del_items:
                trackers_dict.pop(item)
                objects_detected.pop(item)

        fps = cv.getTickFrequency() / (cv.getTickCount() - timer)
        if len(objects_detected) > 0:
            drawPred(frame, objects_detected)
            cv.putText(frame, "FPS : " + str(int(fps)), (100, 50),
                       cv.FONT_HERSHEY_SIMPLEX, 1.35, (50, 170, 50), 1)

        else:
            cv.putText(frame,
                       'Tracking Failure. Trying to detect more objects',
                       (50, 80), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
            stream, objects_detected, objects_list, trackers_dict = intermediate_detections(
                stream, predictor, args.thr, classes)

        cv.imshow(window_name, frame)

        if args.output:
            out.write(frame)
        k = cv.waitKey(1) & 0xff

        #Refresh detection by pressing 'q'
        if k == ord('q'):
            print('Refreshing. Detecting New objects')
            cv.putText(frame, 'Refreshing. Detecting New objects', (100, 80),
                       cv.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
            stream, objects_detected, objects_list, trackers_dict = intermediate_detections(
                stream, predictor, args.thr, classes)

        #Save results and end program if 'e' pressed.
        if k == ord('e'): break

    stream.release()
    if args.output:
        out.release()
    cv.destroyAllWindows()