def search(city):
    visited = []
    best_score = None
    best_move = None
    for i in range(iterations):
        r = random()
        if r <= density_change_chance:
            idx = dens = -1
            lmt = 0  #RZ limit the while loop, it will cause dead loop when density_change_chance is high
            while ((dens == -1 or idx == -1)  \
                or ("DENSITY", idx, dens) in visited)  \
                and lmt < 6 * 30 : #RZ possible moves
                idx = randint(id_range[0],
                              id_range[1] - 1)  #TOTO magic number here?
                dens = randint(density_range[0], density_range[1])
                lmt = lmt + 1  #RZ
            mov = ("DENSITY", idx, dens)
        else:
            x = y = newid = -1
            lmt = 0  #RZ limit the while loop
            while ((x == -1 or y == -1 or newid == -1) \
                or ("CELL", x, y, newid) in visited)  \
                and lmt < 256 * 6 : #RZ possible moves
                x = randint(0, city.width - 1)
                y = randint(0, city.height - 1)
                newid = randint(id_range[0], id_range[1])
                lmt = lmt + 1  #RZ
            mov = ("CELL", x, y, newid)
        visited.append(mov)
        scr = score(city, mov)
        if best_score == None or scr > best_score:
            best_score = scr
            best_move = mov

    suggested_city = move(city, best_move)
    # Update AI params based on this move - changes from Ryan
    log.info("AI search complete. Best score = {}. Best move = {}.".format(
        best_score, best_move))
    suggested_city.updateAIMov(best_move)
    return (suggested_city, best_move, objective.get_metrics(suggested_city))
 def metrics(self):
     return metrics_dictionary(objective.get_metrics(self))
示例#3
0
def search(city, queue=None):
    """Random single moves AI search algorithm.

    Args:
        city (cityiograph.City): the city for which we would like to optimize our metrics
        visited (set, optional): describes previously visited states in our prediction

    Returns:
        3-tuple: suggested_city (cityiograph.City): -
                 best_move (3-tuple):    move type { 'DENSITY', 'CELL' } (str)
                                        index (int) and new density (int)
                                            OR
                                        x (int), y (int) and new type id for that cell
                 scores (list): AI metrics scores
    """
    if queue is None:
        queue = set()
    visited = copy.copy(queue)
    best_score = None
    best_scores = None  # RZ 170615 passing score array to json
    best_move = None
    # RZ 170615 update the weights before search
    objective.update_weights(city.AIWeights)
    for i in range(iterations):
        r = random.random()
        if r <= density_change_chance:
            idx = dens = -1
            lmt = 0  # RZ limit the while loop, it will cause dead loop when density_change_chance is high
            while ((dens == -1 or idx == -1)
                   or ("DENSITY", idx) in visited) \
                    and lmt < 6 * 30 * 4:  # RZ possible moves * 4
                # TOTO magic number here?
                idx = random.randint(id_range[0], id_range[1])
                dens = random.randint(density_range[0], density_range[1])
                lmt = lmt + 1  # RZ
            mov = ("DENSITY", idx, dens)
        else:
            x = y = newid = -1
            lmt = 0  # RZ limit the while loop
            while ((x == -1 or y == -1 or newid == -1)
                   or x < 4 or x > 12 or y < 4 or y > 12 or x == 8 or y == 8
                   or ("CELL", x, y, newid) in visited) \
                    and lmt < 256 * 6 * 4:  # RZ possible moves * 4      # Focus center of city and no road cell
                x = random.randint(0, city.width - 1)
                y = random.randint(0, city.height - 1)
                newid = random.randint(id_range[0], id_range[1])
                lmt = lmt + 1  # RZ
            mov = ("CELL", x, y, newid)
        # Add this move to the visited set
        if mov[0] == 'DENSITY':
            visited.add(mov[:-1])
        else:
            visited.add(mov)
        # KL - minor optimization to avoid duplicate calls to score method
        [scr, best] = scores(city, mov)
        if best_score is None or scr > best_score:
            best_score = scr
            best_scores = best
            best_move = mov

    # Determine our suggested city based on this move
    suggested_city = move(city, best_move)

    # Run the ML prediction on this suggested city
    final_city = ML.predict(suggested_city)

    # Update AI params based on this move - changes from Ryan
    log.info("AI search complete. Best score = {}. Best move = {}.".format(
        best_score, best_move))
    final_city.AIMov = best_move
    final_city.score = scr

    return final_city, best_move, objective.get_metrics(final_city)
示例#4
0
                unity_server.send_data(result)

                log.info(
                    "Same city received, but new toggle value. New ml_city and ai_city data successfully sent to GH.\n")
                log.info("Waiting to receive new city...")

            else:
                # RZ 170626 same city received and not the first city, update
                # meta data for GH UI, do not write to local file

                # RZ 170614 update city.animBlink
                ml_city.animBlink = animBlink
                ai_city.animBlink = animBlink

                # Then, get metrics dicts for cities
                ml_metrics = metrics_dictionary(objective.get_metrics(ml_city))
                ai_metrics = metrics_dictionary(ai_metrics_list)

                # RZ firstly, we need to update only the meta data of the 2
                # cities, including slider position and AI Step
                ml_city.updateMeta(input_city)
                ai_city.updateMeta(input_city)

                # Send resulting 2-city dictionary (predict/ai) back to GH
                if input_city.AIStep < 20:  # KL - accounting for AI step case
                    result = {'predict': ml_city.to_dict(), 'ai': None}
                else:
                    result = {'predict': ml_city.to_dict(),
                              'ai': ai_city.to_dict()}
                server.send_data(result)
                unity_server.send_data(result)