def test_dr_tuning_init_using_valid_input_data(lambdas, tuning_method, description): _ = DoublyRobustTuning(lambdas=lambdas, tuning_method=tuning_method) _ = DoublyRobustWithShrinkageTuning( lambdas=lambdas, tuning_method=tuning_method, ) _ = SwitchDoublyRobustTuning( lambdas=lambdas, tuning_method=tuning_method, ) _ = SubGaussianDoublyRobustTuning( lambdas=lambdas, tuning_method=tuning_method, )
def test_dr_tuning_init_using_invalid_inputs( lambdas, tuning_method, use_bias_upper_bound, delta, use_estimated_pscore, err, description, ): with pytest.raises(err, match=f"{description}*"): _ = DoublyRobustTuning( use_bias_upper_bound=use_bias_upper_bound, delta=delta, lambdas=lambdas, tuning_method=tuning_method, use_estimated_pscore=use_estimated_pscore, ) with pytest.raises(err, match=f"{description}*"): _ = SwitchDoublyRobustTuning( use_bias_upper_bound=use_bias_upper_bound, delta=delta, lambdas=lambdas, tuning_method=tuning_method, use_estimated_pscore=use_estimated_pscore, ) with pytest.raises(err, match=f"{description}*"): _ = DoublyRobustWithShrinkageTuning( use_bias_upper_bound=use_bias_upper_bound, delta=delta, lambdas=lambdas, tuning_method=tuning_method, use_estimated_pscore=use_estimated_pscore, ) with pytest.raises(err, match=f"{description}*"): _ = SubGaussianDoublyRobustTuning( use_bias_upper_bound=use_bias_upper_bound, delta=delta, lambdas=lambdas, tuning_method=tuning_method, use_estimated_pscore=use_estimated_pscore, )
), SelfNormalizedInverseProbabilityWeighting(), DoublyRobustTuning( lambdas=[10, 50, 100, 500, 1000, 5000, np.inf], tuning_method="mse", estimator_name="dr (tuning-mse)", ), DoublyRobustTuning( lambdas=[10, 50, 100, 500, 1000, 5000, np.inf], tuning_method="slope", estimator_name="dr (tuning-slope)", ), SelfNormalizedDoublyRobust(), SwitchDoublyRobustTuning( lambdas=[10, 50, 100, 500, 1000, 5000, np.inf], tuning_method="mse", estimator_name="switch-dr (tuning-mse)", ), SwitchDoublyRobustTuning( lambdas=[10, 50, 100, 500, 1000, 5000, np.inf], tuning_method="slope", estimator_name="switch-dr (tuning-slope)", ), DoublyRobustWithShrinkageTuning( lambdas=[10, 50, 100, 500, 1000, 5000, np.inf], tuning_method="mse", estimator_name="dr-os (tuning-mse)", ), DoublyRobustWithShrinkageTuning( lambdas=[10, 50, 100, 500, 1000, 5000, np.inf], tuning_method="slope",
hyperparams = yaml.safe_load(f) base_model_dict = dict( logistic_regression=LogisticRegression, lightgbm=GradientBoostingClassifier, random_forest=RandomForestClassifier, ) # compared OPE estimators ope_estimators = [ DirectMethod(), InverseProbabilityWeighting(), SelfNormalizedInverseProbabilityWeighting(), DoublyRobust(), SelfNormalizedDoublyRobust(), SwitchDoublyRobustTuning( lambdas=[10, 50, 100, 500, 1000, 5000, 10000, np.inf]), DoublyRobustWithShrinkageTuning( lambdas=[10, 50, 100, 500, 1000, 5000, 10000, np.inf]), ] if __name__ == "__main__": parser = argparse.ArgumentParser( description= "evaluate the accuracy of OPE estimators on synthetic bandit data.") parser.add_argument("--n_runs", type=int, default=1, help="number of simulations in the experiment.") parser.add_argument( "--n_rounds", type=int,
def test_dr_variants_using_valid_input_data( action_dist: np.ndarray, action: np.ndarray, reward: np.ndarray, pscore: np.ndarray, position: np.ndarray, estimated_rewards_by_reg_model: np.ndarray, estimated_pscore: np.ndarray, hyperparameter: float, description: str, ) -> None: # check dr variants switch_dr = SwitchDoublyRobust(lambda_=hyperparameter) switch_dr_tuning_mse = SwitchDoublyRobustTuning( lambdas=[hyperparameter, hyperparameter * 10], tuning_method="mse", ) switch_dr_tuning_slope = SwitchDoublyRobustTuning( lambdas=[hyperparameter, hyperparameter * 10], tuning_method="slope", ) dr_os = DoublyRobustWithShrinkage(lambda_=hyperparameter) dr_os_tuning_mse = DoublyRobustWithShrinkageTuning( lambdas=[hyperparameter, hyperparameter * 10], tuning_method="mse", ) dr_os_tuning_slope = DoublyRobustWithShrinkageTuning( lambdas=[hyperparameter, hyperparameter * 10], tuning_method="slope", ) sg_dr = SubGaussianDoublyRobust(lambda_=hyperparameter) sg_dr_tuning_mse = SubGaussianDoublyRobustTuning( lambdas=[hyperparameter, hyperparameter / 10], tuning_method="mse", ) sg_dr_tuning_slope = SubGaussianDoublyRobustTuning( lambdas=[hyperparameter, hyperparameter / 10], tuning_method="slope", ) switch_dr_estimated_pscore = SwitchDoublyRobust(lambda_=hyperparameter, use_estimated_pscore=True) switch_dr_tuning_estimated_pscore = SwitchDoublyRobustTuning( lambdas=[hyperparameter, hyperparameter * 10], use_estimated_pscore=True) dr_os_estimated_pscore = DoublyRobustWithShrinkage( lambda_=hyperparameter, use_estimated_pscore=True) dr_os_tuning_estimated_pscore = DoublyRobustWithShrinkageTuning( lambdas=[hyperparameter, hyperparameter * 10], use_estimated_pscore=True) for estimator in [ sg_dr, sg_dr_tuning_mse, sg_dr_tuning_slope, switch_dr, switch_dr_tuning_mse, switch_dr_tuning_slope, switch_dr_estimated_pscore, switch_dr_tuning_estimated_pscore, dr_os, dr_os_tuning_mse, dr_os_tuning_slope, dr_os_estimated_pscore, dr_os_tuning_estimated_pscore, ]: est = estimator.estimate_policy_value( action_dist=action_dist, action=action, reward=reward, pscore=pscore, position=position, estimated_rewards_by_reg_model=estimated_rewards_by_reg_model, estimated_pscore=estimated_pscore, ) assert est == 0.0, f"policy value must be 0, but {est}"
estimator_name="dr_tuning_mse") dr_tuning_slope = DoublyRobustTuning(lambdas=[1, 100], tuning_method="slope", estimator_name="dr_tuning_slope") dr_os_0 = DoublyRobustWithShrinkage(lambda_=0.0) dr_os_tuning_mse = DoublyRobustWithShrinkageTuning( lambdas=[1, 100], tuning_method="mse", estimator_name="dr_os_tuning_mse") dr_os_tuning_slope = DoublyRobustWithShrinkageTuning( lambdas=[1, 100], tuning_method="slope", estimator_name="dr_os_tuning_slope") dr_os_max = DoublyRobustWithShrinkage(lambda_=np.inf) sndr = SelfNormalizedDoublyRobust() switch_dr_0 = SwitchDoublyRobust(lambda_=0.0) switch_dr_tuning_mse = SwitchDoublyRobustTuning( lambdas=[1, 100], tuning_method="mse", estimator_name="switch_dr_tuning_mse") switch_dr_tuning_slope = SwitchDoublyRobustTuning( lambdas=[1, 100], tuning_method="slope", estimator_name="switch_dr_tuning_slope") switch_dr_max = SwitchDoublyRobust(lambda_=np.inf) sg_dr_0 = SubGaussianDoublyRobust(lambda_=0.0) sg_dr_tuning_mse = SubGaussianDoublyRobustTuning( lambdas=[0.01, 0.1], tuning_method="mse", estimator_name="sg_dr_tuning_mse") sg_dr_tuning_slope = SubGaussianDoublyRobustTuning( lambdas=[0.01, 0.1], tuning_method="slope", estimator_name="sg_dr_tuning_slope")
def main(cfg: DictConfig) -> None: print(cfg) logger.info(f"The current working directory is {Path().cwd()}") start_time = time.time() logger.info("initializing experimental condition..") # compared ope estimators lambdas = list(dict(cfg.estimator_hyperparams)["lambdas"]) ope_estimators = [ InverseProbabilityWeighting(estimator_name="IPW"), SelfNormalizedInverseProbabilityWeighting(estimator_name="SNIPW"), DirectMethod(estimator_name="DM"), DoublyRobust(estimator_name="DR"), SelfNormalizedDoublyRobust(estimator_name="SNDR"), SwitchDoublyRobustTuning(lambdas=lambdas, estimator_name="Switch-DR"), DoublyRobustWithShrinkageTuning(lambdas=lambdas, estimator_name="DRos"), ] # configurations n_seeds = cfg.setting.n_seeds sample_size = cfg.setting.sample_size reg_model = cfg.setting.reg_model campaign = cfg.setting.campaign behavior_policy = cfg.setting.behavior_policy test_size = cfg.setting.test_size is_timeseries_split = cfg.setting.is_timeseries_split n_folds = cfg.setting.n_folds obd_path = (Path().cwd().parents[5] / "open_bandit_dataset" if cfg.setting.is_full_obd else None) random_state = cfg.setting.random_state np.random.seed(random_state) # define dataset dataset_ts = OpenBanditDataset(behavior_policy="bts", campaign=campaign, data_path=obd_path) dataset_ur = OpenBanditDataset(behavior_policy="random", campaign=campaign, data_path=obd_path) # prepare logged bandit feedback and evaluation policies if behavior_policy == "random": if is_timeseries_split: bandit_feedback_ur = dataset_ur.obtain_batch_bandit_feedback( test_size=test_size, is_timeseries_split=True, )[0] else: bandit_feedback_ur = dataset_ur.obtain_batch_bandit_feedback() bandit_feedbacks = [bandit_feedback_ur] # obtain the ground-truth policy value ground_truth_ts = OpenBanditDataset.calc_on_policy_policy_value_estimate( behavior_policy="bts", campaign=campaign, data_path=obd_path, test_size=test_size, is_timeseries_split=is_timeseries_split, ) # obtain action choice probabilities and define evaluation policies policy_ts = BernoulliTS( n_actions=dataset_ts.n_actions, len_list=dataset_ts.len_list, random_state=random_state, is_zozotown_prior=True, campaign=campaign, ) action_dist_ts = policy_ts.compute_batch_action_dist(n_rounds=1000000) evaluation_policies = [(ground_truth_ts, action_dist_ts)] else: if is_timeseries_split: bandit_feedback_ts = dataset_ts.obtain_batch_bandit_feedback( test_size=test_size, is_timeseries_split=True, )[0] else: bandit_feedback_ts = dataset_ts.obtain_batch_bandit_feedback() bandit_feedbacks = [bandit_feedback_ts] # obtain the ground-truth policy value ground_truth_ur = OpenBanditDataset.calc_on_policy_policy_value_estimate( behavior_policy="random", campaign=campaign, data_path=obd_path, test_size=test_size, is_timeseries_split=is_timeseries_split, ) # obtain action choice probabilities and define evaluation policies policy_ur = Random( n_actions=dataset_ur.n_actions, len_list=dataset_ur.len_list, random_state=random_state, ) action_dist_ur = policy_ur.compute_batch_action_dist(n_rounds=1000000) evaluation_policies = [(ground_truth_ur, action_dist_ur)] # regression models used in ope estimators hyperparams = dict(cfg.reg_model_hyperparams)[reg_model] regression_models = [reg_model_dict[reg_model](**hyperparams)] # define an evaluator class evaluator = InterpretableOPEEvaluator( random_states=np.arange(n_seeds), bandit_feedbacks=bandit_feedbacks, evaluation_policies=evaluation_policies, ope_estimators=ope_estimators, regression_models=regression_models, ) # conduct an evaluation of OPE experiment logger.info("experiment started") _ = evaluator.estimate_policy_value(sample_size=sample_size, n_folds_=n_folds) # calculate statistics mean = evaluator.calculate_mean(root=True) mean_scaled = evaluator.calculate_mean(scale=True, root=True) # save results of the evaluation of off-policy estimators log_path = Path("./outputs") log_path.mkdir(exist_ok=True, parents=True) # save root mse root_mse_df = DataFrame() root_mse_df["estimator"] = list(mean.keys()) root_mse_df["mean"] = list(mean.values()) root_mse_df["mean(scaled)"] = list(mean_scaled.values()) root_mse_df.to_csv(log_path / "root_mse.csv") # conduct pairwise t-tests se_df = DataFrame(evaluator.calculate_squared_error()) se_df = DataFrame(se_df.stack()).reset_index(1) se_df.rename(columns={"level_1": "estimators", 0: "se"}, inplace=True) nonparam_ttests = (pg.pairwise_ttests( data=se_df, dv="se", parametric=False, between="estimators", ).round(4).drop(["Contrast", "Parametric", "Paired"], axis=1)) nonparam_ttests.to_csv(log_path / "nonparam_ttests.csv") # save reg model metrics DataFrame(evaluator.reg_model_metrics).describe().to_csv( log_path / "reg_model_metrics.csv") # print result print(root_mse_df) experiment = f"{campaign}-{behavior_policy}-{sample_size}" elapsed_time = np.round((time.time() - start_time) / 60, 2) logger.info(f"finish experiment {experiment} in {elapsed_time}min")