def classify_text(text_list): text_analyzer = ZeroShotClassificationAnalyzer( model_name_or_path="joeddav/bart-large-mnli-yahoo-answers", ) return text_analyzer.analyze_input( source_response_list=text_list, analyzer_config=ClassificationAnalyzerConfig(labels=[ "no parking", "registration issue", "app issue", "payment issue" ], ))
def zero_shot_analyzer(): return ZeroShotClassificationAnalyzer( model_name_or_path="typeform/mobilebert-uncased-mnli", )
) # Fetch full news article source_config_with_full_text = GoogleNewsConfig( query="bitcoin", max_results=5, fetch_article=True, lookup_period="1d", ) source = GoogleNewsSource() analyzer_config = ClassificationAnalyzerConfig( labels=["buy", "sell", "going up", "going down"], ) text_analyzer = ZeroShotClassificationAnalyzer( model_name_or_path="typeform/mobilebert-uncased-mnli", device="auto") news_articles_without_full_text = source.lookup( source_config_without_full_text) news_articles_with_full_text = source.lookup(source_config_with_full_text) analyzer_responses_without_full_text = text_analyzer.analyze_input( source_response_list=news_articles_without_full_text, analyzer_config=analyzer_config, ) analyzer_responses_with_full_text = text_analyzer.analyze_input( source_response_list=news_articles_with_full_text, analyzer_config=analyzer_config)
dir_path = Path(__file__).resolve().parent.parent source_config = TwitterSourceConfig( keywords=[os.environ['DAILYGET_QUERY']], lookup_period=os.environ['DAILYGET_LOOKUP_PERIOD'], tweet_fields=["author_id", "conversation_id", "created_at", "id", "public_metrics", "text"], user_fields=["id", "name", "public_metrics", "username", "verified"], expansions=["author_id"], place_fields=None, max_tweets=10, ) source = TwitterSource() sink = DailyGetSink() text_analyzer = ZeroShotClassificationAnalyzer( model_name_or_path="joeddav/bart-large-mnli-yahoo-answers", # model_name_or_path="joeddav/xlm-roberta-large-xnli", ) source_response_list = source.lookup(source_config) for idx, source_response in enumerate(source_response_list): logger.info(f"source_response#'{idx}'='{source_response.__dict__}'") analyzer_response_list = text_analyzer.analyze_input( source_response_list=source_response_list, analyzer_config=ClassificationAnalyzerConfig( labels=["service", "delay", "tracking", "no response", "missing items", "delivery", "mask"], ) ) for idx, an_response in enumerate(analyzer_response_list): logger.info(f"analyzer_response#'{idx}'='{an_response.__dict__}'")
) source = TwitterSource() # To start jira server locally `atlas-run-standalone --product jira` jira_sink_config = JiraSinkConfig( url="http://localhost:2990/jira", username=SecretStr("admin"), password=SecretStr("admin"), issue_type={"name": "Task"}, project={"key": "CUS"}, ) jira_sink = JiraSink() text_analyzer = ZeroShotClassificationAnalyzer( model_name_or_path="joeddav/bart-large-mnli-yahoo-answers" ) source_response_list = source.lookup(source_config) for idx, source_response in enumerate(source_response_list): logger.info(f"source_response#'{idx}'='{source_response.__dict__}'") analyzer_response_list = text_analyzer.analyze_input( source_response_list=source_response_list, analyzer_config=ClassificationAnalyzerConfig( labels=["service", "delay", "performance"], ), ) for idx, an_response in enumerate(analyzer_response_list): logger.info(f"analyzer_response#'{idx}'='{an_response.__dict__}'")
def zero_shot_analyzer(): return ZeroShotClassificationAnalyzer( model_name_or_path="joeddav/bart-large-mnli-yahoo-answers", )
from obsei.sink.pandas_sink import PandasSink, PandasSinkConfig from obsei.source.playstore_scrapper import ( PlayStoreScrapperConfig, PlayStoreScrapperSource, ) logger = logging.getLogger(__name__) logging.basicConfig(stream=sys.stdout, level=logging.INFO) source_config = PlayStoreScrapperConfig(countries=["us"], package_name="com.apcoaconnect", max_count=3) source = PlayStoreScrapperSource() text_analyzer = ZeroShotClassificationAnalyzer( model_name_or_path="typeform/mobilebert-uncased-mnli", device="auto") # initialize pandas sink config sink_config = PandasSinkConfig(dataframe=DataFrame()) # initialize pandas sink sink = PandasSink() source_response_list = source.lookup(source_config) analyzer_response_list = text_analyzer.analyze_input( source_response_list=source_response_list, analyzer_config=ClassificationAnalyzerConfig(labels=[ "no parking", "registration issue", "app issue", "payment issue" ], ), )
from obsei.source.playstore_scrapper import ( PlayStoreScrapperConfig, PlayStoreScrapperSource, ) logger = logging.getLogger(__name__) logging.basicConfig(stream=sys.stdout, level=logging.INFO) source_config = PlayStoreScrapperConfig( app_url= 'https://play.google.com/store/apps/details?id=com.google.android.gm&hl=en_IN&gl=US', max_count=3) source = PlayStoreScrapperSource() text_analyzer = ZeroShotClassificationAnalyzer( model_name_or_path="typeform/mobilebert-uncased-mnli", device="auto") source_response_list = source.lookup(source_config) for idx, source_response in enumerate(source_response_list): logger.info(f"source_response#'{idx}'='{source_response.__dict__}'") analyzer_response_list = text_analyzer.analyze_input( source_response_list=source_response_list, analyzer_config=ClassificationAnalyzerConfig( labels=["interface", "slow", "battery"], ), ) for idx, an_response in enumerate(analyzer_response_list): logger.info(f"analyzer_response#'{idx}'='{an_response.__dict__}'")