def surface_S(self, az_deg=0): """ This function generates a (short) time series of surface realizations. :param az_deg: azimuth angle, in degree :param ntimes: number of time samples generated. :param t_step: spacing between time samples. This can be interpreted as the Pulse Repetition Interval :returns: a tuple with the configuration object, the surfaces, the radial velocities for each grid point, and the complex scattering coefficients """ if not self.inc_is_set: print("Set the incident angle first") return cfg = self.cfg use_hmtf = cfg.srg.use_hmtf scat_spec_enable = cfg.srg.scat_spec_enable scat_spec_mode = cfg.srg.scat_spec_mode scat_bragg_enable = cfg.srg.scat_bragg_enable scat_bragg_model = cfg.srg.scat_bragg_model scat_bragg_d = cfg.srg.scat_bragg_d scat_bragg_spec = cfg.srg.scat_bragg_spec scat_bragg_spread = cfg.srg.scat_bragg_spread # SAR alt = cfg.sar.alt f0 = cfg.sar.f0 prf = cfg.sar.prf pol = self.pol l0 = const.c / f0 k0 = 2. * np.pi * self.f0 / const.c do_hh = self.do_hh do_vv = self.do_vv # OCEAN / OTHERS ocean_dt = cfg.ocean.dt # Get a surface realization calculated # self.surface.t = 0 inc_angle = self.inc_angle sr0 = geosar.inc_to_sr(inc_angle, alt) gr0 = geosar.inc_to_gr(inc_angle, alt) gr = self.surface.x + gr0 sr, inc, _ = geosar.gr_to_geo(gr, alt) sr -= np.min(sr) inc = inc.reshape(1, inc.size) sr = sr.reshape(1, sr.size) gr = gr.reshape(1, gr.size) sin_inc = np.sin(inc) cos_inc = np.cos(inc) az_rad = np.radians(az_deg) cos_az = np.cos(az_rad) sin_az = np.sin(az_rad) t_last_rcs_bragg = -1. last_progress = -1 ntimes = self.ntimes NRCS_avg_vv = np.zeros(ntimes, dtype=np.float) NRCS_avg_hh = np.zeros(ntimes, dtype=np.float) # RCS MODELS # Specular if scat_spec_enable: if scat_spec_mode == 'kodis': rcs_spec = rcs.RCSKodis(inc, k0, self.surface.dx, self.surface.dy) elif scat_spec_mode == 'fa' or scat_spec_mode == 'spa': spec_ph0 = np.random.uniform( 0., 2. * np.pi, size=[self.surface.Ny, self.surface.Nx]) rcs_spec = rcs.RCSKA(scat_spec_mode, k0, self.surface.x, self.surface.y, self.surface.dx, self.surface.dy) else: raise NotImplementedError( 'RCS mode %s for specular scattering not implemented' % scat_spec_mode) # Bragg if scat_bragg_enable: phase_bragg = np.zeros([2, self.surface.Ny, self.surface.Nx]) bragg_scats = np.zeros([2, self.surface.Ny, self.surface.Nx], dtype=np.complex) tau_c = closure.grid_coherence(cfg.ocean.wind_U, self.surface.dx, f0) rndscat_p = closure.randomscat_ts( tau_c, (self.surface.Ny, self.surface.Nx), prf) rndscat_m = closure.randomscat_ts( tau_c, (self.surface.Ny, self.surface.Nx), prf) # NOTE: This ignores slope, may be changed k_b = 2. * k0 * sin_inc c_b = sin_inc * np.sqrt(const.g / k_b + 0.072e-3 * k_b) surface_area = self.surface.dx * self.surface.dy * self.surface.Nx * self.surface.Ny if do_hh: scene_hh = np.zeros([ntimes, self.surface.Ny, self.surface.Nx], dtype=np.complex) if do_vv: scene_vv = np.zeros([ntimes, self.surface.Ny, self.surface.Nx], dtype=np.complex) for az_step in range(ntimes): # AZIMUTH & SURFACE UPDATE t_now = az_step * self.t_step ## COMPUTE RCS FOR EACH MODEL # Note: SAR processing is range independent as slant range is fixed # sin_az = az / sr0 # az_proj_angle = np.arcsin(az / gr0) # Note: Projected displacements are added to slant range sr_surface = ( sr - cos_inc * self.dz[az_step] + sin_inc * (self.dx[az_step] * cos_az + self.dy[az_step] * sin_az)) # Specular if scat_spec_enable: if scat_spec_mode == 'kodis': Esn_sp = np.sqrt(4. * np.pi) * rcs_spec.field( az_rad, sr_surface, self.diffx[az_step], self.diffy[az_step], self.diffxx[az_step], self.diffyy[az_step], self.diffxy[az_step]) if do_hh: scene_hh[az_step] += Esn_sp if do_vv: scene_vv[az_step] += Esn_sp else: # FIXME if do_hh: pol_tmp = 'hh' Esn_sp = ( np.exp(-1j * (2. * k0 * sr_surface)) * (4. * np.pi)**1.5 * rcs_spec.field( 1, 1, pol_tmp[0], pol_tmp[1], inc, inc, az_rad, az_rad + np.pi, self.dz[az_step], self.diffx[az_step], self.diffy[az_step], self.diffxx[az_step], self.diffyy[az_step], self.diffxy[az_step])) scene_hh[az_step] += Esn_sp if do_vv: pol_tmp = 'vv' Esn_sp = ( np.exp(-1j * (2. * k0 * sr_surface)) * (4. * np.pi)**1.5 * rcs_spec.field( 1, 1, pol_tmp[0], pol_tmp[1], inc, inc, az_rad, az_rad + np.pi, self.dz[az_step], self.diffx[az_step], self.diffy[az_step], self.diffxx[az_step], self.diffyy[az_step], self.diffxy[az_step])) scene_vv[az_step] += Esn_sp NRCS_avg_hh[az_step] += (np.sum(np.abs(Esn_sp)**2) / surface_area) NRCS_avg_vv[az_step] += NRCS_avg_hh[az_step] # Bragg if scat_bragg_enable: if (t_now - t_last_rcs_bragg) > ocean_dt: if scat_bragg_model == 'romeiser97': if pol == 'DP': RCS_bragg_hh, RCS_bragg_vv = self.rcs_bragg.rcs( az_rad, self.diffx[az_step], self.diffy[az_step]) elif pol == 'hh': RCS_bragg_hh = self.rcs_bragg.rcs( az_rad, self.diffx[az_step], self.diffy[az_step]) else: RCS_bragg_vv = self.rcs_bragg.rcs( az_rad, self.diffx[az_step], self.diffy[az_step]) if use_hmtf: # Fix Bad MTF points (self.h_mtf[az_step])[np.where( self.surface.hMTF < -1)] = -1 if do_hh: RCS_bragg_hh[0] *= (1 + self.h_mtf[az_step]) RCS_bragg_hh[1] *= (1 + self.h_mtf[az_step]) if do_vv: RCS_bragg_vv[0] *= (1 + self.h_mtf[az_step]) RCS_bragg_vv[1] *= (1 + self.h_mtf[az_step]) t_last_rcs_bragg = t_now if do_hh: scat_bragg_hh = np.sqrt(RCS_bragg_hh) NRCS_bragg_hh_instant_avg = np.sum( RCS_bragg_hh) / surface_area NRCS_avg_hh[az_step] += NRCS_bragg_hh_instant_avg if do_vv: scat_bragg_vv = np.sqrt(RCS_bragg_vv) NRCS_bragg_vv_instant_avg = np.sum( RCS_bragg_vv) / surface_area NRCS_avg_vv[az_step] += NRCS_bragg_vv_instant_avg # Doppler phases (Note: Bragg radial velocity taken constant!) surf_phase = -(2 * k0) * sr_surface cap_phase = (2 * k0) * self.t_step * c_b * (az_step + 1) phase_bragg[0] = surf_phase - cap_phase # + dop_phase_p phase_bragg[1] = surf_phase + cap_phase # + dop_phase_m bragg_scats[0] = rndscat_m.scats(t_now) bragg_scats[1] = rndscat_p.scats(t_now) if do_hh: scene_hh[az_step] += ne.evaluate( 'sum(scat_bragg_hh * exp(1j*phase_bragg) * bragg_scats, axis=0)' ) if do_vv: scene_vv[az_step] += ne.evaluate( 'sum(scat_bragg_vv * exp(1j*phase_bragg) * bragg_scats, axis=0)' ) v_r = (self.surface.Vx * np.sin(inc) * np.cos(az_rad) + self.surface.Vy * np.sin(inc) * np.sin(az_rad) - self.surface.Vz * np.cos(inc)) # Some stats if do_hh: w = np.abs(scene_hh[0])**2 v_r_whh = np.sum(v_r * w) / np.sum(w) # FIXME, for now just one lag v_ati_hh = -(np.angle(np.mean(scene_hh[1] * np.conj(scene_hh[0]))) / self.t_step * const.c / 2 / self.f0 / 2 / np.pi) if do_vv: w = np.abs(scene_vv[0])**2 v_r_wvv = np.sum(v_r * w) / np.sum(w) v_ati_vv = -(np.angle(np.mean(scene_vv[1] * np.conj(scene_vv[0]))) / self.t_step * const.c / 2 / self.f0 / 2 / np.pi) if do_hh and do_vv: return { 'v_r': v_r, 'scene_hh': scene_hh, 'scene_vv': scene_vv, 'NRCS_hh': NRCS_avg_hh, 'NRCS_vv': NRCS_avg_vv, 'v_r_whh': v_r_whh, 'v_r_wvv': v_r_wvv, 'v_ATI_hh': v_ati_hh, 'v_ATI_vv': v_ati_vv } # return (cfg, self.surface.Dz, v_r, scene_hh, scene_vv) elif do_hh: return { 'v_r': v_r, 'scene_hh': scene_hh, 'scene_vv': None, 'NRCS_hh': NRCS_avg_hh, 'NRCS_vv': None, 'v_r_whh': v_r_whh, 'v_r_wvv': None, 'v_ATI_hh': v_ati_hh, 'v_ATI_vv': None } # return (cfg, self.surface.Dz, v_r, scene_hh) else: return { 'v_r': v_r, 'scene_hh': None, 'scene_vv': scene_vv, 'NRCS_hh': None, 'NRCS_vv': NRCS_avg_vv, 'v_r_whh': None, 'v_r_wvv': v_r_wvv, 'v_ATI_hh': None, 'v_ATI_vv': v_ati_vv }
def ati_process(cfg_file, proc_output_file, ocean_file, output_file): print('-------------------------------------------------------------------') print(time.strftime("- OCEANSAR ATI Processor: [%Y-%m-%d %H:%M:%S]", time.localtime())) print('-------------------------------------------------------------------') print('Initializing...') ## CONFIGURATION FILE cfg = tpio.ConfigFile(cfg_file) # SAR inc_angle = np.deg2rad(cfg.sar.inc_angle) f0 = cfg.sar.f0 prf = cfg.sar.prf num_ch = cfg.sar.num_ch ant_L = cfg.sar.ant_L alt = cfg.sar.alt v_ground = cfg.sar.v_ground rg_bw = cfg.sar.rg_bw over_fs = cfg.sar.over_fs pol = cfg.sar.pol if pol == 'DP': polt = ['hh', 'vv'] elif pol == 'hh': polt = ['hh'] else: polt = ['vv'] # ATI rg_ml = cfg.ati.rg_ml az_ml = cfg.ati.az_ml ml_win = cfg.ati.ml_win plot_save = cfg.ati.plot_save plot_path = cfg.ati.plot_path plot_format = cfg.ati.plot_format plot_tex = cfg.ati.plot_tex plot_surface = cfg.ati.plot_surface plot_proc_ampl = cfg.ati.plot_proc_ampl plot_coh = cfg.ati.plot_coh plot_coh_all = cfg.ati.plot_coh_all plot_ati_phase = cfg.ati.plot_ati_phase plot_ati_phase_all = cfg.ati.plot_ati_phase_all plot_vel_hist = cfg.ati.plot_vel_hist plot_vel = cfg.ati.plot_vel ## CALCULATE PARAMETERS if v_ground == 'auto': v_ground = geosar.orbit_to_vel(alt, ground=True) k0 = 2.*np.pi*f0/const.c rg_sampling = rg_bw*over_fs # PROCESSED RAW DATA proc_content = tpio.ProcFile(proc_output_file, 'r') proc_data = proc_content.get('slc*') proc_content.close() # OCEAN SURFACE surface = OceanSurface() surface.load(ocean_file, compute=['D', 'V']) surface.t = 0. # OUTPUT FILE output = open(output_file, 'w') # OTHER INITIALIZATIONS # Enable TeX if plot_tex: plt.rc('font', family='serif') plt.rc('text', usetex=True) # Create plots directory plot_path = os.path.dirname(output_file) + os.sep + plot_path if plot_save: if not os.path.exists(plot_path): os.makedirs(plot_path) # SURFACE VELOCITIES grg_grid_spacing = (const.c/2./rg_sampling/np.sin(inc_angle)) rg_res_fact = grg_grid_spacing / surface.dx az_grid_spacing = (v_ground/prf) az_res_fact = az_grid_spacing / surface.dy res_fact = np.ceil(np.sqrt(rg_res_fact*az_res_fact)) # SURFACE RADIAL VELOCITY v_radial_surf = surface.Vx*np.sin(inc_angle) - surface.Vz*np.cos(inc_angle) v_radial_surf_ml = utils.smooth(utils.smooth(v_radial_surf, res_fact * rg_ml, axis=1), res_fact * az_ml, axis=0) v_radial_surf_mean = np.mean(v_radial_surf) v_radial_surf_std = np.std(v_radial_surf) v_radial_surf_ml_std = np.std(v_radial_surf_ml) # SURFACE HORIZONTAL VELOCITY v_horizo_surf = surface.Vx v_horizo_surf_ml = utils.smooth(utils.smooth(v_horizo_surf, res_fact * rg_ml, axis=1), res_fact * az_ml, axis=0) v_horizo_surf_mean = np.mean(v_horizo_surf) v_horizo_surf_std = np.std(v_horizo_surf) v_horizo_surf_ml_std = np.std(v_horizo_surf_ml) # Expected mean azimuth shift sr0 = geosar.inc_to_sr(inc_angle, alt) avg_az_shift = - v_radial_surf_mean / v_ground * sr0 std_az_shift = v_radial_surf_std / v_ground * sr0 ################## # ATI PROCESSING # ################## print('Starting ATI processing...') # Get dimensions & calculate region of interest rg_span = surface.Lx az_span = surface.Ly rg_size = proc_data[0].shape[2] az_size = proc_data[0].shape[1] # Note: RG is projected, so plots are Ground Range rg_min = 0 rg_max = np.int(rg_span/(const.c/2./rg_sampling/np.sin(inc_angle))) az_min = np.int(az_size/2. + (-az_span/2. + avg_az_shift)/(v_ground/prf)) az_max = np.int(az_size/2. + (az_span/2. + avg_az_shift)/(v_ground/prf)) az_guard = np.int(std_az_shift / (v_ground / prf)) if (az_max - az_min) < (2 * az_guard - 10): print('Not enough edge-effect free image') return # Adaptive coregistration if cfg.sar.L_total: ant_L = ant_L/np.float(num_ch) dist_chan = ant_L/2 else: if np.float(cfg.sar.Spacing) != 0: dist_chan = np.float(cfg.sar.Spacing)/2 else: dist_chan = ant_L/2 # dist_chan = ant_L/num_ch/2. print('ATI Spacing: %f' % dist_chan) inter_chan_shift_dist = dist_chan/(v_ground/prf) # Subsample shift in azimuth for chind in range(proc_data.shape[0]): shift_dist = - chind * inter_chan_shift_dist shift_arr = np.exp(-2j * np.pi * shift_dist * np.roll(np.arange(az_size) - az_size/2, int(-az_size / 2)) / az_size) shift_arr = shift_arr.reshape((1, az_size, 1)) proc_data[chind] = np.fft.ifft(np.fft.fft(proc_data[chind], axis=1) * shift_arr, axis=1) # First dimension is number of channels, second is number of pols ch_dim = proc_data.shape[0:2] npol = ch_dim[1] proc_data_rshp = [np.prod(ch_dim), proc_data.shape[2], proc_data.shape[3]] # Compute extended covariance matrices... proc_data = proc_data.reshape(proc_data_rshp) # Intensities i_all = [] for chind in range(proc_data.shape[0]): this_i = utils.smooth(utils.smooth(np.abs(proc_data[chind])**2., rg_ml, axis=1, window=ml_win), az_ml, axis=0, window=ml_win) i_all.append(this_i[az_min:az_max, rg_min:rg_max]) i_all = np.array(i_all) # .reshape((ch_dim) + (az_max - az_min, rg_max - rg_min)) interfs = [] cohs = [] tind = 0 coh_lut = np.zeros((proc_data.shape[0], proc_data.shape[0]), dtype=int) for chind1 in range(proc_data.shape[0]): for chind2 in range(chind1 + 1, proc_data.shape[0]): coh_lut[chind1, chind2] = tind tind = tind + 1 t_interf = utils.smooth(utils.smooth(proc_data[chind2] * np.conj(proc_data[chind1]), rg_ml, axis=1, window=ml_win), az_ml, axis=0, window=ml_win) interfs.append(t_interf[az_min:az_max, rg_min:rg_max]) cohs.append(t_interf[az_min:az_max, rg_min:rg_max] / np.sqrt(i_all[chind1] * i_all[chind2])) print('Generating plots and estimating values...') # SURFACE HEIGHT if plot_surface: plt.figure() plt.imshow(surface.Dz, cmap="ocean", extent=[0, surface.Lx, 0, surface.Ly], origin='lower') plt.title('Surface Height') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') cbar = plt.colorbar() cbar.ax.set_xlabel('[m]') if plot_save: plt.savefig(plot_path + os.sep + 'plot_surface.' + plot_format, bbox_inches='tight') plt.close() else: plt.show() # PROCESSED AMPLITUDE if plot_proc_ampl: for pind in range(npol): save_path = (plot_path + os.sep + 'amp_dB_' + polt[pind]+ '.' + plot_format) plt.figure() plt.imshow(utils.db(i_all[pind]), aspect='equal', origin='lower', vmin=utils.db(np.max(i_all[pind]))-20, extent=[0., rg_span, 0., az_span], interpolation='nearest', cmap='viridis') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("Amplitude") plt.colorbar() plt.savefig(save_path) save_path = (plot_path + os.sep + 'amp_' + polt[pind]+ '.' + plot_format) int_img = (i_all[pind])**0.5 vmin = np.mean(int_img) - 3 * np.std(int_img) vmax = np.mean(int_img) + 3 * np.std(int_img) plt.figure() plt.imshow(int_img, aspect='equal', origin='lower', vmin=vmin, vmax=vmax, extent=[0., rg_span, 0., az_span], interpolation='nearest', cmap='viridis') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("Amplitude") plt.colorbar() plt.savefig(save_path) if plot_coh and ch_dim[0] > 1: for pind in range(npol): save_path = (plot_path + os.sep + 'ATI_coh_' + polt[pind] + polt[pind] + '.' + plot_format) coh_ind = coh_lut[(pind, pind + npol)] plt.figure() plt.imshow(np.abs(cohs[coh_ind]), aspect='equal', origin='lower', vmin=0, vmax=1, extent=[0., rg_span, 0., az_span], cmap='bone') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("ATI Coherence") # plt.colorbar() plt.savefig(save_path) # ATI PHASE tau_ati = dist_chan/v_ground ati_phases = [] # Hack to avoid interferogram computation if there are no interferometric channels if num_ch > 1: npol_ = npol else: npol_ = 0 for pind in range(npol_): save_path = (plot_path + os.sep + 'ATI_pha_' + polt[pind] + polt[pind] + '.' + plot_format) coh_ind = coh_lut[(pind, pind + npol)] ati_phase = uwphase(cohs[coh_ind]) ati_phases.append(ati_phase) v_radial_est = -ati_phase / tau_ati / (k0 * 2.) if plot_ati_phase: phase_mean = np.mean(ati_phase) phase_std = np.std(ati_phase) vmin = np.max([-np.abs(phase_mean) - 4*phase_std, -np.abs(ati_phase).max()]) vmax = np.min([np.abs(phase_mean) + 4*phase_std, np.abs(ati_phase).max()]) plt.figure() plt.imshow(ati_phase, aspect='equal', origin='lower', vmin=vmin, vmax=vmax, extent=[0., rg_span, 0., az_span], cmap='hsv') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("ATI Phase") plt.colorbar() plt.savefig(save_path) save_path = (plot_path + os.sep + 'ATI_rvel_' + polt[pind] + polt[pind] + '.' + plot_format) vmin = -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std vmax = np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std plt.figure() plt.imshow(v_radial_est, aspect='equal', origin='lower', vmin=vmin, vmax=vmax, extent=[0., rg_span, 0., az_span], cmap='bwr') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("Estimated Radial Velocity " + polt[pind]) plt.colorbar() plt.savefig(save_path) if npol_ == 4: # Bypass this for now # Cross pol interferogram coh_ind = coh_lut[(0, 1)] save_path = (plot_path + os.sep + 'POL_coh_' + polt[0] + polt[1] + '.' + plot_format) utils.image(np.abs(cohs[coh_ind]), max=1, min=0, aspect='equal', cmap='gray', extent=[0., rg_span, 0., az_span], xlabel='Ground range [m]', ylabel='Azimuth [m]', title='XPOL Coherence', usetex=plot_tex, save=plot_save, save_path=save_path) save_path = (plot_path + os.sep + 'POL_pha_' + polt[0] + polt[1] + '.' + plot_format) ati_phase = uwphase(cohs[coh_ind]) phase_mean = np.mean(ati_phase) phase_std = np.std(ati_phase) vmin = np.max([-np.abs(phase_mean) - 4*phase_std, -np.pi]) vmax = np.min([np.abs(phase_mean) + 4*phase_std, np.pi]) utils.image(ati_phase, aspect='equal', min=vmin, max=vmax, cmap=utils.bwr_cmap, extent=[0., rg_span, 0., az_span], xlabel='Ground range [m]', ylabel='Azimuth [m]', title='XPOL Phase', cbar_xlabel='[rad]', usetex=plot_tex, save=plot_save, save_path=save_path) if num_ch > 1: ati_phases = np.array(ati_phases) output.write('--------------------------------------------\n') output.write('SURFACE RADIAL VELOCITY - NO SMOOTHING\n') output.write('MEAN(SURF. V) = %.4f\n' % v_radial_surf_mean) output.write('STD(SURF. V) = %.4f\n' % v_radial_surf_std) output.write('--------------------------------------------\n\n') output.write('--------------------------------------------\n') output.write('SURFACE RADIAL VELOCITY - SMOOTHING (WIN. SIZE=%dx%d)\n' % (az_ml, rg_ml)) output.write('MEAN(SURF. V) = %.4f\n' % v_radial_surf_mean) output.write('STD(SURF. V) = %.4f\n' % v_radial_surf_ml_std) output.write('--------------------------------------------\n\n') output.write('--------------------------------------------\n') output.write('SURFACE HORIZONTAL VELOCITY - NO SMOOTHING\n') output.write('MEAN(SURF. V) = %.4f\n' % v_horizo_surf_mean) output.write('STD(SURF. V) = %.4f\n' % v_horizo_surf_std) output.write('--------------------------------------------\n\n') if plot_vel_hist: # PLOT RADIAL VELOCITY plt.figure() plt.hist(v_radial_surf.flatten(), 200, normed=True, histtype='step') #plt.hist(v_radial_surf_ml.flatten(), 500, normed=True, histtype='step') plt.grid(True) plt.xlim([-np.abs(v_radial_surf_mean) - 4.*v_radial_surf_std, np.abs(v_radial_surf_mean) + 4.* v_radial_surf_std]) plt.xlabel('Radial velocity [m/s]') plt.ylabel('PDF') plt.title('Surface velocity') if plot_save: plt.savefig(plot_path + os.sep + 'TRUE_radial_vel_hist.' + plot_format) plt.close() else: plt.show() plt.figure() plt.hist(v_radial_surf_ml.flatten(), 200, normed=True, histtype='step') #plt.hist(v_radial_surf_ml.flatten(), 500, normed=True, histtype='step') plt.grid(True) plt.xlim([-np.abs(v_radial_surf_mean) - 4.*v_radial_surf_std, np.abs(v_radial_surf_mean) + 4.* v_radial_surf_std]) plt.xlabel('Radial velocity [m/s]') plt.ylabel('PDF') plt.title('Surface velocity (low pass filtered)') if plot_save: plt.savefig(plot_path + os.sep + 'TRUE_radial_vel_ml_hist.' + plot_format) plt.close() else: plt.show() if plot_vel: utils.image(v_radial_surf, aspect='equal', cmap=utils.bwr_cmap, extent=[0., rg_span, 0., az_span], xlabel='Ground range [m]', ylabel='Azimuth [m]', title='Surface Radial Velocity', cbar_xlabel='[m/s]', min=-np.abs(v_radial_surf_mean) - 4.*v_radial_surf_std, max=np.abs(v_radial_surf_mean) + 4.*v_radial_surf_std, usetex=plot_tex, save=plot_save, save_path=plot_path + os.sep + 'TRUE_radial_vel.' + plot_format) utils.image(v_radial_surf_ml, aspect='equal', cmap=utils.bwr_cmap, extent=[0., rg_span, 0., az_span], xlabel='Ground range [m]', ylabel='Azimuth [m]', title='Surface Radial Velocity', cbar_xlabel='[m/s]', min=-np.abs(v_radial_surf_mean) - 4.*v_radial_surf_std, max=np.abs(v_radial_surf_mean) + 4.*v_radial_surf_std, usetex=plot_tex, save=plot_save, save_path=plot_path + os.sep + 'TRUE_radial_vel_ml.' + plot_format) ## ESTIMATED VELOCITIES # Note: plot limits are taken from surface calculations to keep the same ranges # ESTIMATE RADIAL VELOCITY v_radial_ests = -ati_phases/tau_ati/(k0*2.) # ESTIMATE HORIZONTAL VELOCITY v_horizo_ests = -ati_phases/tau_ati/(k0*2.)/np.sin(inc_angle) #Trim edges v_radial_ests = v_radial_ests[:, az_guard:-az_guard, 5:-5] v_horizo_ests = v_horizo_ests[:, az_guard:-az_guard, 5:-5] output.write('--------------------------------------------\n') output.write('ESTIMATED RADIAL VELOCITY - NO SMOOTHING\n') for pind in range(npol): output.write("%s Polarization\n" % polt[pind]) output.write('MEAN(EST. V) = %.4f\n' % np.mean(v_radial_ests[pind])) output.write('STD(EST. V) = %.4f\n' % np.std(v_radial_ests[pind])) output.write('--------------------------------------------\n\n') output.write('--------------------------------------------\n') output.write('ESTIMATED RADIAL VELOCITY - SMOOTHING (WIN. SIZE=%dx%d)\n' % (az_ml, rg_ml)) for pind in range(npol): output.write("%s Polarization\n" % polt[pind]) output.write('MEAN(EST. V) = %.4f\n' % np.mean(utils.smooth(utils.smooth(v_radial_ests[pind], rg_ml, axis=1), az_ml, axis=0))) output.write('STD(EST. V) = %.4f\n' % np.std(utils.smooth(utils.smooth(v_radial_ests[pind], rg_ml, axis=1), az_ml, axis=0))) output.write('--------------------------------------------\n\n') output.write('--------------------------------------------\n') output.write('ESTIMATED HORIZONTAL VELOCITY - NO SMOOTHING\n') for pind in range(npol): output.write("%s Polarization\n" % polt[pind]) output.write('MEAN(EST. V) = %.4f\n' % np.mean(v_horizo_ests[pind])) output.write('STD(EST. V) = %.4f\n' % np.std(v_horizo_ests[pind])) output.write('--------------------------------------------\n\n') # Processed NRCS NRCS_est_avg = 10*np.log10(np.mean(np.mean(i_all[:, az_guard:-az_guard, 5:-5], axis=-1), axis=-1)) output.write('--------------------------------------------\n') for pind in range(npol): output.write("%s Polarization\n" % polt[pind]) output.write('Estimated mean NRCS = %5.2f\n' % NRCS_est_avg[pind]) output.write('--------------------------------------------\n\n') # Some bookkeeping information output.write('--------------------------------------------\n') output.write('GROUND RANGE GRID SPACING = %.4f\n' % grg_grid_spacing) output.write('AZIMUTH GRID SPACING = %.4f\n' % az_grid_spacing) output.write('--------------------------------------------\n\n') output.close() if plot_vel_hist and num_ch > 1: # PLOT RADIAL VELOCITY plt.figure() plt.hist(v_radial_surf.flatten(), 200, normed=True, histtype='step', label='True') for pind in range(npol): plt.hist(v_radial_ests[pind].flatten(), 200, normed=True, histtype='step', label=polt[pind]) plt.grid(True) plt.xlim([-np.abs(v_radial_surf_mean) - 4.*v_radial_surf_std, np.abs(v_radial_surf_mean) + 4.*v_radial_surf_std]) plt.xlabel('Radial velocity [m/s]') plt.ylabel('PDF') plt.title('Estimated velocity') plt.legend() if plot_save: plt.savefig(plot_path + os.sep + 'ATI_radial_vel_hist.' + plot_format) plt.close() else: plt.show() print('----------------------------------------') print(time.strftime("ATI Processing finished [%Y-%m-%d %H:%M:%S]", time.localtime())) print('----------------------------------------')
def sarraw(cfg_file, output_file, ocean_file, reuse_ocean_file, errors_file, reuse_errors_file, plot_save=True): ################### # INITIALIZATIONS # ################### ## MPI SETUP comm = MPI.COMM_WORLD size, rank = comm.Get_size(), comm.Get_rank() ## WELCOME if rank == 0: print( '-------------------------------------------------------------------' ) print( time.strftime("- OCEANSAR SAR RAW GENERATOR: %Y-%m-%d %H:%M:%S", time.localtime())) print('- Copyright (c) Gerard Marull Paretas, Paco Lopez Dekker') print( '-------------------------------------------------------------------' ) ## CONFIGURATION FILE # Note: variables are 'copied' to reduce code verbosity cfg = tpio.ConfigFile(cfg_file) # RAW wh_tol = cfg.srg.wh_tol nesz = cfg.srg.nesz use_hmtf = cfg.srg.use_hmtf scat_spec_enable = cfg.srg.scat_spec_enable scat_spec_mode = cfg.srg.scat_spec_mode scat_bragg_enable = cfg.srg.scat_bragg_enable scat_bragg_model = cfg.srg.scat_bragg_model scat_bragg_d = cfg.srg.scat_bragg_d scat_bragg_spec = cfg.srg.scat_bragg_spec scat_bragg_spread = cfg.srg.scat_bragg_spread # SAR inc_angle = np.deg2rad(cfg.sar.inc_angle) f0 = cfg.sar.f0 pol = cfg.sar.pol squint_r = np.degrees(cfg.sar.squint) if pol == 'DP': do_hh = True do_vv = True elif pol == 'hh': do_hh = True do_vv = False else: do_hh = False do_vv = True prf = cfg.sar.prf num_ch = int(cfg.sar.num_ch) ant_L = cfg.sar.ant_L alt = cfg.sar.alt v_ground = cfg.sar.v_ground rg_bw = cfg.sar.rg_bw over_fs = cfg.sar.over_fs sigma_n_tx = cfg.sar.sigma_n_tx phase_n_tx = np.deg2rad(cfg.sar.phase_n_tx) sigma_beta_tx = cfg.sar.sigma_beta_tx phase_beta_tx = np.deg2rad(cfg.sar.phase_beta_tx) sigma_n_rx = cfg.sar.sigma_n_rx phase_n_rx = np.deg2rad(cfg.sar.phase_n_rx) sigma_beta_rx = cfg.sar.sigma_beta_rx phase_beta_rx = np.deg2rad(cfg.sar.phase_beta_rx) # OCEAN / OTHERS ocean_dt = cfg.ocean.dt add_point_target = False use_numba = True n_sinc_samples = 8 sinc_ovs = 20 chan_sinc_vec = raw.calc_sinc_vec(n_sinc_samples, sinc_ovs, Fs=over_fs) # OCEAN SURFACE if rank == 0: print('Initializing ocean surface...') surface_full = OceanSurface() # Setup compute values compute = ['D', 'Diff', 'Diff2'] if use_hmtf: compute.append('hMTF') # Try to reuse initialized surface if reuse_ocean_file: try: surface_full.load(ocean_file, compute) except RuntimeError: pass if (not reuse_ocean_file) or (not surface_full.initialized): if hasattr(cfg.ocean, 'use_buoy_data'): if cfg.ocean.use_buoy_data: bdataf = cfg.ocean.buoy_data_file date = datetime.datetime(np.int(cfg.ocean.year), np.int(cfg.ocean.month), np.int(cfg.ocean.day), np.int(cfg.ocean.hour), np.int(cfg.ocean.minute), 0) date, bdata = tpio.load_buoydata(bdataf, date) buoy_spec = tpio.BuoySpectra(bdata, heading=cfg.sar.heading, depth=cfg.ocean.depth) dirspectrum_func = buoy_spec.Sk2 # Since the wind direction is included in the buoy data wind_dir = 0 else: dirspectrum_func = None wind_dir = np.deg2rad(cfg.ocean.wind_dir) else: dirspectrum_func = None wind_dir = np.deg2rad(cfg.ocean.wind_dir) surface_full.init(cfg.ocean.Lx, cfg.ocean.Ly, cfg.ocean.dx, cfg.ocean.dy, cfg.ocean.cutoff_wl, cfg.ocean.spec_model, cfg.ocean.spread_model, wind_dir, cfg.ocean.wind_fetch, cfg.ocean.wind_U, cfg.ocean.current_mag, np.deg2rad(cfg.ocean.current_dir), cfg.ocean.swell_enable, cfg.ocean.swell_ampl, np.deg2rad(cfg.ocean.swell_dir), cfg.ocean.swell_wl, compute, cfg.ocean.opt_res, cfg.ocean.fft_max_prime, choppy_enable=cfg.ocean.choppy_enable, depth=cfg.ocean.depth, dirspectrum_func=dirspectrum_func) surface_full.save(ocean_file) # Now we plot the directional spectrum # self.wave_dirspec[good_k] = dirspectrum_func(self.kx[good_k], self.ky[good_k]) plt.figure() plt.imshow(np.fft.fftshift(surface_full.wave_dirspec), extent=[ surface_full.kx.min(), surface_full.kx.max(), surface_full.ky.min(), surface_full.ky.max() ], origin='lower', cmap='inferno_r') plt.grid(True) pltax = plt.gca() pltax.set_xlim((-0.1, 0.1)) pltax.set_ylim((-0.1, 0.1)) Narr_length = 0.08 # np.min([surface_full.kx.max(), surface_full.ky.max()]) pltax.arrow(0, 0, -Narr_length * np.sin(np.radians(cfg.sar.heading)), Narr_length * np.cos(np.radians(cfg.sar.heading)), fc="k", ec="k") plt.xlabel('$k_x$ [rad/m]') plt.ylabel('$k_y$ [rad/m]') plt.colorbar() #plt.show() # Create plots directory plot_path = os.path.dirname(output_file) + os.sep + 'raw_plots' if plot_save: if not os.path.exists(plot_path): os.makedirs(plot_path) plt.savefig(os.path.join(plot_path, 'input_dirspectrum.png')) plt.close() else: surface_full = None # Initialize surface balancer surface = OceanSurfaceBalancer(surface_full, ocean_dt) # CALCULATE PARAMETERS if rank == 0: print('Initializing simulation parameters...') # SR/GR/INC Matrixes sr0 = geosar.inc_to_sr(inc_angle, alt) gr0 = geosar.inc_to_gr(inc_angle, alt) gr = surface.x + gr0 sr, inc, _ = geosar.gr_to_geo(gr, alt) sr -= np.min(sr) #inc = np.repeat(inc[np.newaxis, :], surface.Ny, axis=0) #sr = np.repeat(sr[np.newaxis, :], surface.Ny, axis=0) #gr = np.repeat(gr[np.newaxis, :], surface.Ny, axis=0) #Let's try to safe some memory and some operations inc = inc.reshape(1, inc.size) sr = sr.reshape(1, sr.size) gr = gr.reshape(1, gr.size) sin_inc = np.sin(inc) cos_inc = np.cos(inc) # lambda, K, resolution, time, etc. l0 = const.c / f0 k0 = 2. * np.pi * f0 / const.c sr_res = const.c / (2. * rg_bw) if cfg.sar.L_total: ant_L = ant_L / np.float(num_ch) d_chan = ant_L else: if np.float(cfg.sar.Spacing) != 0: d_chan = np.float(cfg.sar.Spacing) else: d_chan = ant_L if v_ground == 'auto': v_ground = geosar.orbit_to_vel(alt, ground=True) t_step = 1. / prf t_span = (1.5 * (sr0 * l0 / ant_L) + surface.Ly) / v_ground az_steps = np.int(np.floor(t_span / t_step)) # Number of RG samples max_sr = np.max(sr) + wh_tol + (np.max(surface.y_full) + (t_span / 2.) * v_ground)**2. / (2. * sr0) min_sr = np.min(sr) - wh_tol rg_samp_orig = np.int(np.ceil(((max_sr - min_sr) / sr_res) * over_fs)) rg_samp = np.int(utils.optimize_fftsize(rg_samp_orig)) # Other initializations if do_hh: proc_raw_hh = np.zeros([num_ch, az_steps, rg_samp], dtype=np.complex) if do_vv: proc_raw_vv = np.zeros([num_ch, az_steps, rg_samp], dtype=np.complex) t_last_rcs_bragg = -1. last_progress = -1 NRCS_avg_vv = np.zeros(az_steps, dtype=np.float) NRCS_avg_hh = np.zeros(az_steps, dtype=np.float) ## RCS MODELS # Specular if scat_spec_enable: if scat_spec_mode == 'kodis': rcs_spec = rcs.RCSKodis(inc, k0, surface.dx, surface.dy) elif scat_spec_mode == 'fa' or scat_spec_mode == 'spa': spec_ph0 = np.random.uniform(0., 2. * np.pi, size=[surface.Ny, surface.Nx]) rcs_spec = rcs.RCSKA(scat_spec_mode, k0, surface.x, surface.y, surface.dx, surface.dy) else: raise NotImplementedError( 'RCS mode %s for specular scattering not implemented' % scat_spec_mode) # Bragg if scat_bragg_enable: phase_bragg = np.zeros([2, surface.Ny, surface.Nx]) bragg_scats = np.zeros([2, surface.Ny, surface.Nx], dtype=np.complex) # dop_phase_p = np.random.uniform(0., 2.*np.pi, size=[surface.Ny, surface.Nx]) # dop_phase_m = np.random.uniform(0., 2.*np.pi, size=[surface.Ny, surface.Nx]) tau_c = closure.grid_coherence(cfg.ocean.wind_U, surface.dx, f0) rndscat_p = closure.randomscat_ts(tau_c, (surface.Ny, surface.Nx), prf) rndscat_m = closure.randomscat_ts(tau_c, (surface.Ny, surface.Nx), prf) # NOTE: This ignores slope, may be changed k_b = 2. * k0 * sin_inc c_b = sin_inc * np.sqrt(const.g / k_b + 0.072e-3 * k_b) if scat_bragg_model == 'romeiser97': current_dir = np.deg2rad(cfg.ocean.current_dir) current_vec = (cfg.ocean.current_mag * np.array( [np.cos(current_dir), np.sin(current_dir)])) U_dir = np.deg2rad(cfg.ocean.wind_dir) U_vec = (cfg.ocean.wind_U * np.array([np.cos(U_dir), np.sin(U_dir)])) U_eff_vec = U_vec - current_vec rcs_bragg = rcs.RCSRomeiser97( k0, inc, pol, surface.dx, surface.dy, linalg.norm(U_eff_vec), np.arctan2(U_eff_vec[1], U_eff_vec[0]), surface.wind_fetch, scat_bragg_spec, scat_bragg_spread, scat_bragg_d) else: raise NotImplementedError( 'RCS model %s for Bragg scattering not implemented' % scat_bragg_model) surface_area = surface.dx * surface.dy * surface.Nx * surface.Ny ################### # SIMULATION LOOP # ################### if rank == 0: print('Computing profiles...') for az_step in np.arange(az_steps, dtype=np.int): ## AZIMUTH & SURFACE UPDATE t_now = az_step * t_step az_now = (t_now - t_span / 2.) * v_ground # az = np.repeat((surface.y - az_now)[:, np.newaxis], surface.Nx, axis=1) az = (surface.y - az_now).reshape((surface.Ny, 1)) surface.t = t_now ## COMPUTE RCS FOR EACH MODEL # Note: SAR processing is range independent as slant range is fixed sin_az = az / sr0 az_proj_angle = np.arcsin(az / gr0) # Note: Projected displacements are added to slant range sr_surface = (sr - cos_inc * surface.Dz + az / 2 * sin_az + surface.Dx * sin_inc + surface.Dy * sin_az) if do_hh: scene_hh = np.zeros( [int(surface.Ny), int(surface.Nx)], dtype=np.complex) if do_vv: scene_vv = np.zeros( [int(surface.Ny), int(surface.Nx)], dtype=np.complex) # Point target if add_point_target and rank == 0: sr_pt = (sr[0, surface.Nx / 2] + az[surface.Ny / 2, 0] / 2 * sin_az[surface.Ny / 2, surface.Nx / 2]) pt_scat = (100. * np.exp(-1j * 2. * k0 * sr_pt)) if do_hh: scene_hh[surface.Ny / 2, surface.Nx / 2] = pt_scat if do_vv: scene_vv[surface.Ny / 2, surface.Nx / 2] = pt_scat sr_surface[surface.Ny / 2, surface.Nx / 2] = sr_pt # Specular if scat_spec_enable: if scat_spec_mode == 'kodis': Esn_sp = np.sqrt(4. * np.pi) * rcs_spec.field( az_proj_angle, sr_surface, surface.Diffx, surface.Diffy, surface.Diffxx, surface.Diffyy, surface.Diffxy) if do_hh: scene_hh += Esn_sp if do_vv: scene_vv += Esn_sp else: # FIXME if do_hh: pol_tmp = 'hh' Esn_sp = ( np.exp(-1j * (2. * k0 * sr_surface)) * (4. * np.pi)**1.5 * rcs_spec.field( 1, 1, pol_tmp[0], pol_tmp[1], inc, inc, az_proj_angle, az_proj_angle + np.pi, surface.Dz, surface.Diffx, surface.Diffy, surface.Diffxx, surface.Diffyy, surface.Diffxy)) scene_hh += Esn_sp if do_vv: pol_tmp = 'vv' Esn_sp = ( np.exp(-1j * (2. * k0 * sr_surface)) * (4. * np.pi)**1.5 * rcs_spec.field( 1, 1, pol_tmp[0], pol_tmp[1], inc, inc, az_proj_angle, az_proj_angle + np.pi, surface.Dz, surface.Diffx, surface.Diffy, surface.Diffxx, surface.Diffyy, surface.Diffxy)) scene_vv += Esn_sp NRCS_avg_hh[az_step] += (np.sum(np.abs(Esn_sp)**2) / surface_area) NRCS_avg_vv[az_step] += NRCS_avg_hh[az_step] # Bragg if scat_bragg_enable: if (t_now - t_last_rcs_bragg) > ocean_dt: if scat_bragg_model == 'romeiser97': if pol == 'DP': RCS_bragg_hh, RCS_bragg_vv = rcs_bragg.rcs( az_proj_angle, surface.Diffx, surface.Diffy) elif pol == 'hh': RCS_bragg_hh = rcs_bragg.rcs(az_proj_angle, surface.Diffx, surface.Diffy) else: RCS_bragg_vv = rcs_bragg.rcs(az_proj_angle, surface.Diffx, surface.Diffy) if use_hmtf: # Fix Bad MTF points surface.hMTF[np.where(surface.hMTF < -1)] = -1 if do_hh: RCS_bragg_hh[0] *= (1 + surface.hMTF) RCS_bragg_hh[1] *= (1 + surface.hMTF) if do_vv: RCS_bragg_vv[0] *= (1 + surface.hMTF) RCS_bragg_vv[1] *= (1 + surface.hMTF) t_last_rcs_bragg = t_now if do_hh: scat_bragg_hh = np.sqrt(RCS_bragg_hh) NRCS_bragg_hh_instant_avg = np.sum(RCS_bragg_hh) / surface_area NRCS_avg_hh[az_step] += NRCS_bragg_hh_instant_avg if do_vv: scat_bragg_vv = np.sqrt(RCS_bragg_vv) NRCS_bragg_vv_instant_avg = np.sum(RCS_bragg_vv) / surface_area NRCS_avg_vv[az_step] += NRCS_bragg_vv_instant_avg # Doppler phases (Note: Bragg radial velocity taken constant!) surf_phase = -(2 * k0) * sr_surface cap_phase = (2 * k0) * t_step * c_b * (az_step + 1) phase_bragg[0] = surf_phase - cap_phase # + dop_phase_p phase_bragg[1] = surf_phase + cap_phase # + dop_phase_m bragg_scats[0] = rndscat_m.scats(t_now) bragg_scats[1] = rndscat_p.scats(t_now) if do_hh: scene_hh += ne.evaluate( 'sum(scat_bragg_hh * exp(1j*phase_bragg) * bragg_scats, axis=0)' ) if do_vv: scene_vv += ne.evaluate( 'sum(scat_bragg_vv * exp(1j*phase_bragg) * bragg_scats, axis=0)' ) ## ANTENNA PATTERN ## FIXME: this assume co-located Tx and Tx, so it will not work for true bistatic configurations if cfg.sar.L_total: beam_pattern = sinc_1tx_nrx(sin_az, ant_L * num_ch, f0, num_ch, field=True) else: beam_pattern = sinc_1tx_nrx(sin_az, ant_L, f0, 1, field=True) ## GENERATE CHANEL PROFILES for ch in np.arange(num_ch, dtype=np.int): if do_hh: scene_bp = scene_hh * beam_pattern # Add channel phase & compute profile scene_bp *= np.exp(-1j * k0 * d_chan * ch * sin_az) if use_numba: raw.chan_profile_numba(sr_surface.flatten(), scene_bp.flatten(), sr_res / (over_fs), min_sr, chan_sinc_vec, n_sinc_samples, sinc_ovs, proc_raw_hh[ch][az_step]) else: raw.chan_profile_weave(sr_surface.flatten(), scene_bp.flatten(), sr_res / (over_fs), min_sr, chan_sinc_vec, n_sinc_samples, sinc_ovs, proc_raw_hh[ch][az_step]) if do_vv: scene_bp = scene_vv * beam_pattern # Add channel phase & compute profile scene_bp *= np.exp(-1j * k0 * d_chan * ch * sin_az) if use_numba: raw.chan_profile_numba(sr_surface.flatten(), scene_bp.flatten(), sr_res / (over_fs), min_sr, chan_sinc_vec, n_sinc_samples, sinc_ovs, proc_raw_vv[ch][az_step]) else: raw.chan_profile_weave(sr_surface.flatten(), scene_bp.flatten(), sr_res / (over_fs), min_sr, chan_sinc_vec, n_sinc_samples, sinc_ovs, proc_raw_vv[ch][az_step]) # SHOW PROGRESS (%) current_progress = np.int((100 * az_step) / az_steps) if current_progress != last_progress: last_progress = current_progress print('SP,%d,%d,%d' % (rank, size, current_progress)) # MERGE RESULTS if do_hh: total_raw_hh = np.empty_like(proc_raw_hh) if rank == 0 else None comm.Reduce(proc_raw_hh, total_raw_hh, op=MPI.SUM, root=0) if do_vv: total_raw_vv = np.empty_like(proc_raw_vv) if rank == 0 else None comm.Reduce(proc_raw_vv, total_raw_vv, op=MPI.SUM, root=0) ## PROCESS REDUCED RAW DATA & SAVE (ROOT) if rank == 0: print('Processing and saving results...') # Filter and decimate #range_filter = np.ones_like(total_raw) #range_filter[:, :, rg_samp/(2*2*cfg.sar.over_fs):-rg_samp/(2*2*cfg.sar.over_fs)] = 0 #total_raw = np.fft.ifft(range_filter*np.fft.fft(total_raw)) if do_hh: total_raw_hh = total_raw_hh[:, :, :rg_samp_orig] if do_vv: total_raw_vv = total_raw_vv[:, :, :rg_samp_orig] # Calibration factor (projected antenna pattern integrated in azimuth) az_axis = np.arange(-t_span / 2. * v_ground, t_span / 2. * v_ground, sr0 * const.c / (np.pi * f0 * ant_L * 10.)) if cfg.sar.L_total: pattern = sinc_1tx_nrx(az_axis / sr0, ant_L * num_ch, f0, num_ch, field=True) else: pattern = sinc_1tx_nrx(az_axis / sr0, ant_L, f0, 1, field=True) cal_factor = (1. / np.sqrt( np.trapz(np.abs(pattern)**2., az_axis) * sr_res / np.sin(inc_angle))) if do_hh: noise = (utils.db2lin(nesz, amplitude=True) / np.sqrt(2.) * (np.random.normal(size=total_raw_hh.shape) + 1j * np.random.normal(size=total_raw_hh.shape))) total_raw_hh = total_raw_hh * cal_factor + noise if do_vv: noise = (utils.db2lin(nesz, amplitude=True) / np.sqrt(2.) * (np.random.normal(size=total_raw_vv.shape) + 1j * np.random.normal(size=total_raw_vv.shape))) total_raw_vv = total_raw_vv * cal_factor + noise # Add slow-time error # if use_errors: # if do_hh: # total_raw_hh *= errors.beta_noise # if do_vv: # total_raw_vv *= errors.beta_noise # Save RAW data (and other properties, used by 3rd party software) if do_hh and do_vv: rshp = (1, ) + total_raw_hh.shape total_raw = np.concatenate( (total_raw_hh.reshape(rshp), total_raw_vv.reshape(rshp))) rshp = (1, ) + NRCS_avg_hh.shape NRCS_avg = np.concatenate( (NRCS_avg_hh.reshape(rshp), NRCS_avg_vv.reshape(rshp))) elif do_hh: rshp = (1, ) + total_raw_hh.shape total_raw = total_raw_hh.reshape(rshp) rshp = (1, ) + NRCS_avg_hh.shape NRCS_avg = NRCS_avg_hh.reshape(rshp) else: rshp = (1, ) + total_raw_vv.shape total_raw = total_raw_vv.reshape(rshp) rshp = (1, ) + NRCS_avg_vv.shape NRCS_avg = NRCS_avg_vv.reshape(rshp) raw_file = tpio.RawFile(output_file, 'w', total_raw.shape) raw_file.set('inc_angle', np.rad2deg(inc_angle)) raw_file.set('f0', f0) raw_file.set('num_ch', num_ch) raw_file.set('ant_L', ant_L) raw_file.set('prf', prf) raw_file.set('v_ground', v_ground) raw_file.set('orbit_alt', alt) raw_file.set('sr0', sr0) raw_file.set('rg_sampling', rg_bw * over_fs) raw_file.set('rg_bw', rg_bw) raw_file.set('raw_data*', total_raw) raw_file.set('NRCS_avg', NRCS_avg) raw_file.close() print(time.strftime("Finished [%Y-%m-%d %H:%M:%S]", time.localtime()))
def l2_wavespectrum(cfg_file, proc_output_file, ocean_file, output_file): print( '-------------------------------------------------------------------') print( time.strftime("- OCEANSAR L2 Wavespectra: [%Y-%m-%d %H:%M:%S]", time.localtime())) print( '-------------------------------------------------------------------') print('Initializing...') ## CONFIGURATION FILE cfg = tpio.ConfigFile(cfg_file) # SAR inc_angle = np.deg2rad(cfg.sar.inc_angle) f0 = cfg.sar.f0 prf = cfg.sar.prf num_ch = cfg.sar.num_ch ant_L = cfg.sar.ant_L alt = cfg.sar.alt v_ground = cfg.sar.v_ground rg_bw = cfg.sar.rg_bw over_fs = cfg.sar.over_fs pol = cfg.sar.pol if pol == 'DP': polt = ['hh', 'vv'] elif pol == 'hh': polt = ['hh'] else: polt = ['vv'] # L2 wavespectrum rg_ml = cfg.L2_wavespectrum.rg_ml az_ml = cfg.L2_wavespectrum.az_ml krg_ml = cfg.L2_wavespectrum.krg_ml kaz_ml = cfg.L2_wavespectrum.kaz_ml ml_win = cfg.L2_wavespectrum.ml_win plot_save = cfg.L2_wavespectrum.plot_save plot_path = cfg.L2_wavespectrum.plot_path plot_format = cfg.L2_wavespectrum.plot_format plot_tex = cfg.L2_wavespectrum.plot_tex plot_surface = cfg.L2_wavespectrum.plot_surface plot_proc_ampl = cfg.L2_wavespectrum.plot_proc_ampl plot_spectrum = cfg.L2_wavespectrum.plot_spectrum n_sublook = cfg.L2_wavespectrum.n_sublook sublook_weighting = cfg.L2_wavespectrum.sublook_az_weighting ## CALCULATE PARAMETERS if v_ground == 'auto': v_ground = geosar.orbit_to_vel(alt, ground=True) k0 = 2. * np.pi * f0 / const.c rg_sampling = rg_bw * over_fs # PROCESSED RAW DATA proc_content = tpio.ProcFile(proc_output_file, 'r') proc_data = proc_content.get('slc*') proc_content.close() # OCEAN SURFACE surface = OceanSurface() surface.load(ocean_file, compute=['D', 'V']) surface.t = 0. # OUTPUT FILE output = open(output_file, 'w') # OTHER INITIALIZATIONS # Enable TeX if plot_tex: plt.rc('font', family='serif') plt.rc('text', usetex=True) # Create plots directory plot_path = os.path.dirname(output_file) + os.sep + plot_path if plot_save: if not os.path.exists(plot_path): os.makedirs(plot_path) # SURFACE VELOCITIES grg_grid_spacing = (const.c / 2. / rg_sampling / np.sin(inc_angle)) rg_res_fact = grg_grid_spacing / surface.dx az_grid_spacing = (v_ground / prf) az_res_fact = az_grid_spacing / surface.dy res_fact = np.ceil(np.sqrt(rg_res_fact * az_res_fact)) # SURFACE RADIAL VELOCITY v_radial_surf = surface.Vx * np.sin(inc_angle) - surface.Vz * np.cos( inc_angle) v_radial_surf_ml = utils.smooth(utils.smooth(v_radial_surf, res_fact * rg_ml, axis=1), res_fact * az_ml, axis=0) v_radial_surf_mean = np.mean(v_radial_surf) v_radial_surf_std = np.std(v_radial_surf) v_radial_surf_ml_std = np.std(v_radial_surf_ml) # Expected mean azimuth shift sr0 = geosar.inc_to_sr(inc_angle, alt) avg_az_shift = -v_radial_surf_mean / v_ground * sr0 std_az_shift = v_radial_surf_std / v_ground * sr0 print('Starting Wavespectrum processing...') # Get dimensions & calculate region of interest rg_span = surface.Lx az_span = surface.Ly rg_size = proc_data[0].shape[2] az_size = proc_data[0].shape[1] # Note: RG is projected, so plots are Ground Range rg_min = 0 rg_max = np.int(rg_span / (const.c / 2. / rg_sampling / np.sin(inc_angle))) az_min = np.int(az_size / 2. + (-az_span / 2. + avg_az_shift) / (v_ground / prf)) az_max = np.int(az_size / 2. + (az_span / 2. + avg_az_shift) / (v_ground / prf)) az_guard = np.int(std_az_shift / (v_ground / prf)) az_min = az_min + az_guard az_max = az_max - az_guard if (az_max - az_min) < (2 * az_guard - 10): print('Not enough edge-effect free image') return # Adaptive coregistration if cfg.sar.L_total: ant_L = ant_L / np.float(num_ch) dist_chan = ant_L / 2 else: if np.float(cfg.sar.Spacing) != 0: dist_chan = np.float(cfg.sar.Spacing) / 2 else: dist_chan = ant_L / 2 # dist_chan = ant_L/num_ch/2. print('ATI Spacing: %f' % dist_chan) inter_chan_shift_dist = dist_chan / (v_ground / prf) # Subsample shift in azimuth for chind in range(proc_data.shape[0]): shift_dist = -chind * inter_chan_shift_dist shift_arr = np.exp( -2j * np.pi * shift_dist * np.roll(np.arange(az_size) - az_size / 2, int(-az_size / 2)) / az_size) shift_arr = shift_arr.reshape((1, az_size, 1)) proc_data[chind] = np.fft.ifft(np.fft.fft(proc_data[chind], axis=1) * shift_arr, axis=1) # First dimension is number of channels, second is number of pols ch_dim = proc_data.shape[0:2] npol = ch_dim[1] proc_data_rshp = [np.prod(ch_dim), proc_data.shape[2], proc_data.shape[3]] # Compute extended covariance matrices... proc_data = proc_data.reshape(proc_data_rshp) # Intensities i_all = [] for chind in range(proc_data.shape[0]): this_i = utils.smooth(utils.smooth(np.abs(proc_data[chind])**2., rg_ml, axis=1, window=ml_win), az_ml, axis=0, window=ml_win) i_all.append(this_i[az_min:az_max, rg_min:rg_max]) i_all = np.array(i_all) ## Wave spectra computation ## Processed Doppler bandwidth proc_bw = cfg.processing.doppler_bw PRF = cfg.sar.prf fa = np.fft.fftfreq(proc_data_rshp[1], 1 / PRF) # Filters sublook_filt = [] sublook_bw = proc_bw / n_sublook for i_sbl in range(n_sublook): fa_min = -1 * proc_bw / 2 + i_sbl * sublook_bw fa_max = fa_min + sublook_bw fa_c = (fa_max + fa_min) / 2 win = np.where( np.logical_and(fa > fa_min, fa < fa_max), (sublook_weighting - (1 - sublook_weighting) * np.cos(2 * np.pi * (fa - fa_min) / sublook_bw)), 0) sublook_filt.append(win) # Apply sublooks az_downsmp = int(np.floor(az_ml / 2)) rg_downsmp = int(np.floor(rg_ml / 2)) sublooks = [] sublooks_f = [] for i_sbl in range(n_sublook): # Go to frequency domain sublook_data = np.fft.ifft(np.fft.fft(proc_data, axis=1) * sublook_filt[i_sbl].reshape( (1, proc_data_rshp[1], 1)), axis=1) # Get intensities sublook_data = np.abs(sublook_data)**2 # Multilook for chind in range(proc_data.shape[0]): sublook_data[chind] = utils.smooth(utils.smooth( sublook_data[chind], rg_ml, axis=1), az_ml, axis=0) # Keep only valid part and down sample sublook_data = sublook_data[:, az_min:az_max:az_downsmp, rg_min:rg_max:rg_downsmp] sublooks.append(sublook_data) sublooks_f.append( np.fft.fft(np.fft.fft(sublook_data - np.mean(sublook_data), axis=1), axis=2)) kaz = 2 * np.pi * np.fft.fftfreq(sublook_data.shape[1], az_downsmp * az_grid_spacing) kgrg = 2 * np.pi * np.fft.fftfreq(sublook_data.shape[2], rg_downsmp * grg_grid_spacing) xspecs = [] tind = 0 xspec_lut = np.zeros((len(sublooks), len(sublooks)), dtype=int) for ind1 in range(len(sublooks)): for ind2 in range(ind1 + 1, len(sublooks)): xspec_lut[ind1, ind2] = tind tind = tind + 1 xspec = sublooks_f[ind1] * np.conj(sublooks_f[ind2]) xspecs.append(xspec) with open(output_file, 'wb') as output: pickle.dump(xspecs, output, pickle.HIGHEST_PROTOCOL) pickle.dump([kaz, kgrg], output, pickle.HIGHEST_PROTOCOL) # PROCESSED AMPLITUDE if plot_proc_ampl: for pind in range(npol): save_path = (plot_path + os.sep + 'amp_dB_' + polt[pind] + '.' + plot_format) plt.figure() plt.imshow(utils.db(i_all[pind]), aspect='equal', origin='lower', vmin=utils.db(np.max(i_all[pind])) - 20, extent=[0., rg_span, 0., az_span], interpolation='nearest', cmap='viridis') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("Amplitude") plt.colorbar() plt.savefig(save_path) save_path = (plot_path + os.sep + 'amp_' + polt[pind] + '.' + plot_format) int_img = (i_all[pind])**0.5 vmin = np.mean(int_img) - 3 * np.std(int_img) vmax = np.mean(int_img) + 3 * np.std(int_img) plt.figure() plt.imshow(int_img, aspect='equal', origin='lower', vmin=vmin, vmax=vmax, extent=[0., rg_span, 0., az_span], interpolation='nearest', cmap='viridis') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("Amplitude") plt.colorbar() plt.savefig(save_path) ## FIXME: I am plotting the cross spectrum for the first polarization and the first channel only, which is not ## very nice. To be fixed, in particular por multiple polarizations for ind1 in range(len(sublooks)): for ind2 in range(ind1 + 1, len(sublooks)): save_path_abs = os.path.join(plot_path, ('xspec_abs_%i%i.%s' % (ind1 + 1, ind2 + 1, plot_format))) save_path_pha = os.path.join(plot_path, ('xspec_pha_%i%i.%s' % (ind1 + 1, ind2 + 1, plot_format))) save_path_im = os.path.join(plot_path, ('xspec_im_%i%i.%s' % (ind1 + 1, ind2 + 1, plot_format))) ml_xspec = utils.smooth(utils.smooth(np.fft.fftshift( xspecs[xspec_lut[ind1, ind2]][0]), krg_ml, axis=1), kaz_ml, axis=0) plt.figure() plt.imshow(np.abs(ml_xspec), origin='lower', cmap='inferno_r', extent=[kgrg.min(), kgrg.max(), kaz.min(), kaz.max()], interpolation='nearest') plt.grid(True) pltax = plt.gca() pltax.set_xlim((-0.1, 0.1)) pltax.set_ylim((-0.1, 0.1)) northarr_length = 0.075 # np.min([surface_full.kx.max(), surface_full.ky.max()]) pltax.arrow(0, 0, -northarr_length * np.sin(np.radians(cfg.sar.heading)), northarr_length * np.cos(np.radians(cfg.sar.heading)), fc="k", ec="k") plt.xlabel('$k_x$ [rad/m]') plt.ylabel('$k_y$ [rad/m]') plt.colorbar() plt.savefig(save_path_abs) plt.close() plt.figure() ml_xspec_pha = np.angle(ml_xspec) ml_xspec_im = np.imag(ml_xspec) immax = np.abs(ml_xspec_im).max() whimmax = np.abs(ml_xspec_im).flatten().argmax() phmax = np.abs(ml_xspec_pha.flatten()[whimmax]) plt.imshow(ml_xspec_pha, origin='lower', cmap='bwr', extent=[kgrg.min(), kgrg.max(), kaz.min(), kaz.max()], interpolation='nearest', vmin=-2 * phmax, vmax=2 * phmax) plt.grid(True) pltax = plt.gca() pltax.set_xlim((-0.1, 0.1)) pltax.set_ylim((-0.1, 0.1)) northarr_length = 0.075 # np.min([surface_full.kx.max(), surface_full.ky.max()]) pltax.arrow(0, 0, -northarr_length * np.sin(np.radians(cfg.sar.heading)), northarr_length * np.cos(np.radians(cfg.sar.heading)), fc="k", ec="k") plt.xlabel('$k_x$ [rad/m]') plt.ylabel('$k_y$ [rad/m]') plt.colorbar() plt.savefig(save_path_pha) plt.close() plt.figure() plt.imshow(ml_xspec_im, origin='lower', cmap='bwr', extent=[kgrg.min(), kgrg.max(), kaz.min(), kaz.max()], interpolation='nearest', vmin=-2 * immax, vmax=2 * immax) plt.grid(True) pltax = plt.gca() pltax.set_xlim((-0.1, 0.1)) pltax.set_ylim((-0.1, 0.1)) northarr_length = 0.075 # np.min([surface_full.kx.max(), surface_full.ky.max()]) pltax.arrow(0, 0, -northarr_length * np.sin(np.radians(cfg.sar.heading)), northarr_length * np.cos(np.radians(cfg.sar.heading)), fc="k", ec="k") plt.xlabel('$k_x$ [rad/m]') plt.ylabel('$k_y$ [rad/m]') plt.colorbar() plt.savefig(save_path_im) plt.close()
def ati_process(cfg_file, insar_output_file, ocean_file, output_file): print( '-------------------------------------------------------------------') print( time.strftime("- OCEANSAR ATI Processor: [%Y-%m-%d %H:%M:%S]", time.localtime())) print( '-------------------------------------------------------------------') print('Initializing...') ## CONFIGURATION FILE cfg = tpio.ConfigFile(cfg_file) # SAR pol = cfg.sar.pol if pol == 'DP': polt = ['hh', 'vv'] elif pol == 'hh': polt = ['hh'] else: polt = ['vv'] # ATI ml_win = cfg.ati.ml_win plot_save = cfg.ati.plot_save plot_path = cfg.ati.plot_path plot_format = cfg.ati.plot_format plot_tex = cfg.ati.plot_tex plot_surface = cfg.ati.plot_surface plot_proc_ampl = cfg.ati.plot_proc_ampl plot_coh = cfg.ati.plot_coh plot_coh_all = cfg.ati.plot_coh_all plot_ati_phase = cfg.ati.plot_ati_phase plot_ati_phase_all = cfg.ati.plot_ati_phase_all plot_vel_hist = cfg.ati.plot_vel_hist plot_vel = cfg.ati.plot_vel # PROCESSED InSAR L1b DATA insar_data = tpio.L1bFile(insar_output_file, 'r') i_all = insar_data.get('ml_intensity') cohs = insar_data.get('ml_coherence') * np.exp( 1j * insar_data.get('ml_phase')) coh_lut = insar_data.get('coh_lut') sr0 = insar_data.get('sr0') inc_angle = insar_data.get('inc_angle') b_ati = insar_data.get('b_ati') b_xti = insar_data.get('b_xti') f0 = insar_data.get('f0') az_sampling = insar_data.get('az_sampling') num_ch = insar_data.get('num_ch') rg_sampling = insar_data.get('rg_sampling') v_ground = insar_data.get('v_ground') alt = insar_data.get('orbit_alt') inc_angle = np.deg2rad(insar_data.get('inc_angle')) rg_ml = insar_data.get('rg_ml') az_ml = insar_data.get('az_ml') insar_data.close() # CALCULATE PARAMETERS k0 = 2. * np.pi * f0 / const.c # OCEAN SURFACE surface = OceanSurface() surface.load(ocean_file, compute=['D', 'V']) surface.t = 0. # OUTPUT FILE output = open(output_file, 'w') # OTHER INITIALIZATIONS # Enable TeX if plot_tex: plt.rc('font', family='serif') plt.rc('text', usetex=True) # Create plots directory plot_path = os.path.dirname(output_file) + os.sep + plot_path if plot_save: if not os.path.exists(plot_path): os.makedirs(plot_path) # SURFACE VELOCITIES grg_grid_spacing = (const.c / 2. / rg_sampling / np.sin(inc_angle)) rg_res_fact = grg_grid_spacing / surface.dx az_grid_spacing = (v_ground / az_sampling) az_res_fact = az_grid_spacing / surface.dy res_fact = np.ceil(np.sqrt(rg_res_fact * az_res_fact)) # SURFACE RADIAL VELOCITY v_radial_surf = surface.Vx * np.sin(inc_angle) - surface.Vz * np.cos( inc_angle) v_radial_surf_ml = utils.smooth(utils.smooth(v_radial_surf, res_fact * rg_ml, axis=1), res_fact * az_ml, axis=0) v_radial_surf_mean = np.mean(v_radial_surf) v_radial_surf_std = np.std(v_radial_surf) v_radial_surf_ml_std = np.std(v_radial_surf_ml) # SURFACE HORIZONTAL VELOCITY v_horizo_surf = surface.Vx v_horizo_surf_ml = utils.smooth(utils.smooth(v_horizo_surf, res_fact * rg_ml, axis=1), res_fact * az_ml, axis=0) v_horizo_surf_mean = np.mean(v_horizo_surf) v_horizo_surf_std = np.std(v_horizo_surf) v_horizo_surf_ml_std = np.std(v_horizo_surf_ml) # Expected mean azimuth shift sr0 = geosar.inc_to_sr(inc_angle, alt) avg_az_shift = -v_radial_surf_mean / v_ground * sr0 std_az_shift = v_radial_surf_std / v_ground * sr0 az_guard = np.int(std_az_shift / (v_ground / az_sampling)) ################## # ATI PROCESSING # ################## print('Starting ATI processing...') # Get dimensions & calculate region of interest rg_span = surface.Lx az_span = surface.Ly # First dimension is number of channels, second is number of pols ch_dim = i_all.shape[0:2] npol = ch_dim[1] print('Generating plots and estimating values...') # SURFACE HEIGHT if plot_surface: plt.figure() plt.imshow(surface.Dz, cmap="ocean", extent=[0, surface.Lx, 0, surface.Ly], origin='lower') plt.title('Surface Height') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') cbar = plt.colorbar() cbar.ax.set_xlabel('[m]') if plot_save: plt.savefig(plot_path + os.sep + 'plot_surface.' + plot_format, bbox_inches='tight') plt.close() else: plt.show() # PROCESSED AMPLITUDE if plot_proc_ampl: for pind in range(npol): save_path = (plot_path + os.sep + 'amp_dB_' + polt[pind] + '.' + plot_format) plt.figure() plt.imshow(utils.db(i_all[0, pind]), aspect='equal', origin='lower', vmin=utils.db(np.max(i_all[pind])) - 20, extent=[0., rg_span, 0., az_span], interpolation='nearest', cmap='viridis') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("Amplitude") plt.colorbar() plt.savefig(save_path) plt.close() save_path = (plot_path + os.sep + 'amp_' + polt[pind] + '.' + plot_format) int_img = (i_all[0, pind])**0.5 vmin = np.mean(int_img) - 3 * np.std(int_img) vmax = np.mean(int_img) + 3 * np.std(int_img) plt.figure() plt.imshow(int_img, aspect='equal', origin='lower', vmin=vmin, vmax=vmax, extent=[0., rg_span, 0., az_span], interpolation='nearest', cmap='viridis') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("Amplitude") plt.colorbar() plt.savefig(save_path) plt.close() if plot_coh and ch_dim[0] > 1: for pind in range(npol): save_path = (plot_path + os.sep + 'ATI_coh_' + polt[pind] + polt[pind] + '.' + plot_format) coh_ind = coh_lut[0, pind, 1, pind] plt.figure() plt.imshow(np.abs(cohs[coh_ind]), aspect='equal', origin='lower', vmin=0, vmax=1, extent=[0., rg_span, 0., az_span], cmap='bone') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("ATI Coherence") # plt.colorbar() plt.savefig(save_path) # ATI PHASE tau_ati = b_ati / v_ground ati_phases = [] # Hack to avoid interferogram computation if there are no interferometric channels if num_ch > 1: npol_ = npol else: npol_ = 0 for pind in range(npol_): save_path = (plot_path + os.sep + 'ATI_pha_' + polt[pind] + polt[pind] + '.' + plot_format) coh_ind = coh_lut[(0, pind, 1, pind)] ati_phase = uwphase(cohs[coh_ind]) ati_phases.append(ati_phase) v_radial_est = -ati_phase / tau_ati[1] / (k0 * 2.) if plot_ati_phase: phase_mean = np.mean(ati_phase) phase_std = np.std(ati_phase) vmin = np.max([ -np.abs(phase_mean) - 4 * phase_std, -np.abs(ati_phase).max() ]) vmax = np.min( [np.abs(phase_mean) + 4 * phase_std, np.abs(ati_phase).max()]) plt.figure() plt.imshow(ati_phase, aspect='equal', origin='lower', vmin=vmin, vmax=vmax, extent=[0., rg_span, 0., az_span], cmap='hsv') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("ATI Phase") plt.colorbar() plt.savefig(save_path) save_path = (plot_path + os.sep + 'ATI_rvel_' + polt[pind] + polt[pind] + '.' + plot_format) vmin = -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std vmax = np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std plt.figure() plt.imshow(v_radial_est, aspect='equal', origin='lower', vmin=vmin, vmax=vmax, extent=[0., rg_span, 0., az_span], cmap='bwr') plt.xlabel('Ground range [m]') plt.ylabel('Azimuth [m]') plt.title("Estimated Radial Velocity " + polt[pind]) plt.colorbar() plt.savefig(save_path) if npol_ == 4: # Bypass this for now # Cross pol interferogram coh_ind = coh_lut[(0, 1)] save_path = (plot_path + os.sep + 'POL_coh_' + polt[0] + polt[1] + '.' + plot_format) utils.image(np.abs(cohs[coh_ind]), max=1, min=0, aspect='equal', cmap='gray', extent=[0., rg_span, 0., az_span], xlabel='Ground range [m]', ylabel='Azimuth [m]', title='XPOL Coherence', usetex=plot_tex, save=plot_save, save_path=save_path) save_path = (plot_path + os.sep + 'POL_pha_' + polt[0] + polt[1] + '.' + plot_format) ati_phase = uwphase(cohs[coh_ind]) phase_mean = np.mean(ati_phase) phase_std = np.std(ati_phase) vmin = np.max([-np.abs(phase_mean) - 4 * phase_std, -np.pi]) vmax = np.min([np.abs(phase_mean) + 4 * phase_std, np.pi]) utils.image(ati_phase, aspect='equal', min=vmin, max=vmax, cmap=utils.bwr_cmap, extent=[0., rg_span, 0., az_span], xlabel='Ground range [m]', ylabel='Azimuth [m]', title='XPOL Phase', cbar_xlabel='[rad]', usetex=plot_tex, save=plot_save, save_path=save_path) if num_ch > 1: ati_phases = np.array(ati_phases) output.write('--------------------------------------------\n') output.write('SURFACE RADIAL VELOCITY - NO SMOOTHING\n') output.write('MEAN(SURF. V) = %.4f\n' % v_radial_surf_mean) output.write('STD(SURF. V) = %.4f\n' % v_radial_surf_std) output.write('--------------------------------------------\n\n') output.write('--------------------------------------------\n') output.write( 'SURFACE RADIAL VELOCITY - SMOOTHING (WIN. SIZE=%dx%d)\n' % (az_ml, rg_ml)) output.write('MEAN(SURF. V) = %.4f\n' % v_radial_surf_mean) output.write('STD(SURF. V) = %.4f\n' % v_radial_surf_ml_std) output.write('--------------------------------------------\n\n') output.write('--------------------------------------------\n') output.write('SURFACE HORIZONTAL VELOCITY - NO SMOOTHING\n') output.write('MEAN(SURF. V) = %.4f\n' % v_horizo_surf_mean) output.write('STD(SURF. V) = %.4f\n' % v_horizo_surf_std) output.write('--------------------------------------------\n\n') if plot_vel_hist: # PLOT RADIAL VELOCITY plt.figure() plt.hist(v_radial_surf.flatten(), 200, density=True, histtype='step') #plt.hist(v_radial_surf_ml.flatten(), 500, density=True, histtype='step') plt.grid(True) plt.xlim([ -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std, np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std ]) plt.xlabel('Radial velocity [m/s]') plt.ylabel('PDF') plt.title('Surface velocity') if plot_save: plt.savefig(plot_path + os.sep + 'TRUE_radial_vel_hist.' + plot_format) plt.close() else: plt.show() plt.figure() plt.hist(v_radial_surf_ml.flatten(), 200, density=True, histtype='step') #plt.hist(v_radial_surf_ml.flatten(), 500, density=True, histtype='step') plt.grid(True) plt.xlim([ -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std, np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std ]) plt.xlabel('Radial velocity [m/s]') plt.ylabel('PDF') plt.title('Surface velocity (low pass filtered)') if plot_save: plt.savefig(plot_path + os.sep + 'TRUE_radial_vel_ml_hist.' + plot_format) plt.close() else: plt.show() if plot_vel: utils.image( v_radial_surf, aspect='equal', cmap=utils.bwr_cmap, extent=[0., rg_span, 0., az_span], xlabel='Ground range [m]', ylabel='Azimuth [m]', title='Surface Radial Velocity', cbar_xlabel='[m/s]', min=-np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std, max=np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std, usetex=plot_tex, save=plot_save, save_path=plot_path + os.sep + 'TRUE_radial_vel.' + plot_format) utils.image( v_radial_surf_ml, aspect='equal', cmap=utils.bwr_cmap, extent=[0., rg_span, 0., az_span], xlabel='Ground range [m]', ylabel='Azimuth [m]', title='Surface Radial Velocity', cbar_xlabel='[m/s]', min=-np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std, max=np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std, usetex=plot_tex, save=plot_save, save_path=plot_path + os.sep + 'TRUE_radial_vel_ml.' + plot_format) ## ESTIMATED VELOCITIES # Note: plot limits are taken from surface calculations to keep the same ranges # ESTIMATE RADIAL VELOCITY v_radial_ests = -ati_phases / tau_ati[1] / (k0 * 2.) # ESTIMATE HORIZONTAL VELOCITY v_horizo_ests = -ati_phases / tau_ati[1] / (k0 * 2.) / np.sin(inc_angle) #Trim edges v_radial_ests = v_radial_ests[:, az_guard:-az_guard, 5:-5] v_horizo_ests = v_horizo_ests[:, az_guard:-az_guard, 5:-5] output.write('--------------------------------------------\n') output.write('ESTIMATED RADIAL VELOCITY - NO SMOOTHING\n') for pind in range(npol): output.write("%s Polarization\n" % polt[pind]) output.write('MEAN(EST. V) = %.4f\n' % np.mean(v_radial_ests[pind])) output.write('STD(EST. V) = %.4f\n' % np.std(v_radial_ests[pind])) output.write('--------------------------------------------\n\n') output.write('--------------------------------------------\n') output.write( 'ESTIMATED RADIAL VELOCITY - SMOOTHING (WIN. SIZE=%dx%d)\n' % (az_ml, rg_ml)) for pind in range(npol): output.write("%s Polarization\n" % polt[pind]) output.write('MEAN(EST. V) = %.4f\n' % np.mean( utils.smooth(utils.smooth(v_radial_ests[pind], rg_ml, axis=1), az_ml, axis=0))) output.write('STD(EST. V) = %.4f\n' % np.std( utils.smooth(utils.smooth(v_radial_ests[pind], rg_ml, axis=1), az_ml, axis=0))) output.write('--------------------------------------------\n\n') output.write('--------------------------------------------\n') output.write('ESTIMATED HORIZONTAL VELOCITY - NO SMOOTHING\n') for pind in range(npol): output.write("%s Polarization\n" % polt[pind]) output.write('MEAN(EST. V) = %.4f\n' % np.mean(v_horizo_ests[pind])) output.write('STD(EST. V) = %.4f\n' % np.std(v_horizo_ests[pind])) output.write('--------------------------------------------\n\n') # Processed NRCS NRCS_est_avg = 10 * np.log10( np.mean(np.mean(i_all[:, :, az_guard:-az_guard, 5:-5], axis=-1), axis=-1)) output.write('--------------------------------------------\n') for pind in range(npol): output.write("%s Polarization\n" % polt[pind]) output.write('Estimated mean NRCS = %5.2f\n' % NRCS_est_avg[0, pind]) output.write('--------------------------------------------\n\n') # Some bookkeeping information output.write('--------------------------------------------\n') output.write('GROUND RANGE GRID SPACING = %.4f\n' % grg_grid_spacing) output.write('AZIMUTH GRID SPACING = %.4f\n' % az_grid_spacing) output.write('--------------------------------------------\n\n') output.close() if plot_vel_hist and num_ch > 1: # PLOT RADIAL VELOCITY plt.figure() plt.hist(v_radial_surf.flatten(), 200, density=True, histtype='step', label='True') for pind in range(npol): plt.hist(v_radial_ests[pind].flatten(), 200, density=True, histtype='step', label=polt[pind]) plt.grid(True) plt.xlim([ -np.abs(v_radial_surf_mean) - 4. * v_radial_surf_std, np.abs(v_radial_surf_mean) + 4. * v_radial_surf_std ]) plt.xlabel('Radial velocity [m/s]') plt.ylabel('PDF') plt.title('Estimated velocity') plt.legend() if plot_save: plt.savefig(plot_path + os.sep + 'ATI_radial_vel_hist.' + plot_format) plt.close() else: plt.show() # Save some statistics to npz file # if num_ch > 1: filenpz = os.path.join(os.path.dirname(output_file), 'ati_stats.npz') # Mean coh cohs = np.array(cohs)[:, az_guard:-az_guard, 5:-5] np.savez(filenpz, nrcs=NRCS_est_avg, v_r_dop=np.mean(np.mean(v_radial_ests, axis=-1), axis=-1), v_r_surf=v_radial_surf_mean, v_r_surf_std=v_radial_surf_std, coh_mean=np.mean(np.mean(cohs, axis=-1), axis=-1), abscoh_mean=np.mean(np.mean(np.abs(cohs), axis=-1), axis=-1), coh_lut=coh_lut, pols=polt) print('----------------------------------------') print( time.strftime("ATI Processing finished [%Y-%m-%d %H:%M:%S]", time.localtime())) print('----------------------------------------')