示例#1
0
    def test_variable_scatter(self):
        var_value = np.arange(5, dtype=float) + 50
        var_mask = np.array([True, True, False, True, False])

        dest_dist = OcgDist()
        five = dest_dist.create_dimension('five', 5, src_idx=np.arange(5), dist=True)
        bounds = dest_dist.create_dimension('bounds', 2)
        dest_dist.update_dimension_bounds()

        if MPI_RANK == 0:
            local_dim = Dimension('local', 5, src_idx=np.arange(5))
            dim_src_idx = local_dim._src_idx.copy()

            var = Variable('the_five', value=var_value, mask=var_mask, dimensions=five.name)
            var.set_extrapolated_bounds('the_five_bounds', 'bounds')
            var_bounds_value = var.bounds.get_value()
        else:
            var, var_bounds_value, dim_src_idx = [None] * 3

        svar = variable_scatter(var, dest_dist)

        var_bounds_value = MPI_COMM.bcast(var_bounds_value)
        dim_src_idx = MPI_COMM.bcast(dim_src_idx)

        if MPI_RANK > 1:
            self.assertIsNone(svar.get_value())
            self.assertTrue(svar.is_empty)
        else:
            dest_dim = dest_dist.get_dimension('five')
            self.assertNumpyAll(var_value[slice(*dest_dim.bounds_local)], svar.get_value())
            self.assertNumpyAll(var_mask[slice(*dest_dim.bounds_local)], svar.get_mask())
            self.assertNumpyAll(var_bounds_value[slice(*dest_dim.bounds_local)], svar.bounds.get_value())
            self.assertNumpyAll(dim_src_idx[slice(*dest_dim.bounds_local)], svar.dimensions[0]._src_idx)
            self.assertNumpyAll(dim_src_idx[slice(*dest_dim.bounds_local)], svar.bounds.dimensions[0]._src_idx)
示例#2
0
    def test_system_parallel_write_ndvariable(self):
        """Test a parallel CSV write with a n-dimensional variable."""

        ompi = OcgDist()
        ompi.create_dimension('time', 3)
        ompi.create_dimension('extra', 2)
        ompi.create_dimension('x', 4)
        ompi.create_dimension('y', 7, dist=True)
        ompi.update_dimension_bounds()

        if MPI_RANK == 0:
            path = self.get_temporary_file_path('foo.csv')

            t = TemporalVariable(name='time',
                                 value=[1, 2, 3],
                                 dtype=float,
                                 dimensions='time')
            t.set_extrapolated_bounds('the_time_bounds', 'bounds')

            extra = Variable(name='extra', value=[7, 8], dimensions='extra')

            x = Variable(name='x',
                         value=[9, 10, 11, 12],
                         dimensions='x',
                         dtype=float)
            x.set_extrapolated_bounds('x_bounds', 'bounds')

            # This will have the distributed dimension.
            y = Variable(name='y',
                         value=[13, 14, 15, 16, 17, 18, 19],
                         dimensions='y',
                         dtype=float)
            y.set_extrapolated_bounds('y_bounds', 'bounds')

            data = Variable(name='data',
                            value=np.random.rand(3, 2, 7, 4),
                            dimensions=['time', 'extra', 'y', 'x'])

            vc = VariableCollection(variables=[t, extra, x, y, data])
        else:
            path, vc = [None] * 2

        path = MPI_COMM.bcast(path)
        vc = variable_collection_scatter(vc, ompi)

        with vm.scoped_by_emptyable('write', vc):
            if not vm.is_null:
                vc.write(path,
                         iter_kwargs={
                             'variable': 'data',
                             'followers': ['time', 'extra', 'y', 'x']
                         },
                         driver=DriverCSV)

        if MPI_RANK == 0:
            desired = 169
            with open(path, 'r') as f:
                lines = f.readlines()
            self.assertEqual(len(lines), desired)
示例#3
0
    def test_set_extrapolated_bounds(self):
        value_grid = [[[40.0, 40.0, 40.0, 40.0], [39.0, 39.0, 39.0, 39.0],
                       [38.0, 38.0, 38.0, 38.0]],
                      [[-100.0, -99.0, -98.0, -97.0],
                       [-100.0, -99.0, -98.0, -97.0],
                       [-100.0, -99.0, -98.0, -97.0]]]
        actual_corners = [[[[40.5, 40.5, 39.5, 39.5], [40.5, 40.5, 39.5, 39.5],
                            [40.5, 40.5, 39.5, 39.5], [40.5, 40.5, 39.5,
                                                       39.5]],
                           [[39.5, 39.5, 38.5, 38.5], [39.5, 39.5, 38.5, 38.5],
                            [39.5, 39.5, 38.5, 38.5], [39.5, 39.5, 38.5,
                                                       38.5]],
                           [[38.5, 38.5, 37.5, 37.5], [38.5, 38.5, 37.5, 37.5],
                            [38.5, 38.5, 37.5, 37.5], [38.5, 38.5, 37.5,
                                                       37.5]]],
                          [[[-100.5, -99.5, -99.5, -100.5],
                            [-99.5, -98.5, -98.5, -99.5],
                            [-98.5, -97.5, -97.5, -98.5],
                            [-97.5, -96.5, -96.5, -97.5]],
                           [[-100.5, -99.5, -99.5, -100.5],
                            [-99.5, -98.5, -98.5, -99.5],
                            [-98.5, -97.5, -97.5, -98.5],
                            [-97.5, -96.5, -96.5, -97.5]],
                           [[-100.5, -99.5, -99.5, -100.5],
                            [-99.5, -98.5, -98.5, -99.5],
                            [-98.5, -97.5, -97.5, -98.5],
                            [-97.5, -96.5, -96.5, -97.5]]]]

        for should_extrapolate in [False, True]:
            y = Variable(name='y',
                         value=value_grid[0],
                         dimensions=['ydim', 'xdim'])
            x = Variable(name='x',
                         value=value_grid[1],
                         dimensions=['ydim', 'xdim'])
            if should_extrapolate:
                y.set_extrapolated_bounds('ybounds', 'bounds')
                x.set_extrapolated_bounds('xbounds', 'bounds')
            grid = Grid(x, y)
            try:
                grid.set_extrapolated_bounds('ybounds', 'xbounds', 'bounds')
            except BoundsAlreadyAvailableError:
                self.assertTrue(should_extrapolate)
            else:
                np.testing.assert_equal(grid.y.bounds.get_value(),
                                        actual_corners[0])
                np.testing.assert_equal(grid.x.bounds.get_value(),
                                        actual_corners[1])

        # Test vectorized.
        y = Variable(name='y', value=[1., 2., 3.], dimensions='yy')
        x = Variable(name='x', value=[10., 20., 30.], dimensions='xx')
        grid = Grid(x, y)
        grid.set_extrapolated_bounds('ybounds', 'xbounds', 'bounds')
        self.assertEqual(grid.x.bounds.ndim, 2)
        self.assertTrue(grid.is_vectorized)
示例#4
0
    def test_iter_with_bounds(self):
        var = Variable(name='bounded', value=[1, 2, 3, 4], dtype=float, dimensions='dim')
        var.set_extrapolated_bounds('the_bounds', 'bounds')

        lower = Variable(name='lower_bounds', value=var.bounds.get_value()[:, 0], dimensions=var.dimensions)
        upper = Variable(name='upper_bounds', value=var.bounds.get_value()[:, 1], dimensions=var.dimensions)

        itr = Iterator(var, followers=[lower, upper])

        actual = list(itr)

        self.assertEqual(len(actual), var.shape[0])
        self.assertEqual(len(actual[0]), 3)
示例#5
0
文件: test_geom.py 项目: NCPP/ocgis
    def test_init(self):
        row = Variable(value=[2, 3], name='row', dimensions='y')
        col = Variable(value=[4, 5], name='col', dimensions='x')
        grid = Grid(col, row)
        self.assertIsNone(grid.archetype.bounds)

        row = Variable(value=[2, 3], name='row', dimensions='y')
        row.set_extrapolated_bounds('row_bounds', 'bounds')
        col = Variable(value=[4, 5], name='col', dimensions='x')
        col.set_extrapolated_bounds('col_bounds', 'bounds')
        grid = Grid(y=row, x=col)
        self.assertEqual(grid.abstraction, 'polygon')
        poly = get_geometry_variable(grid)
        self.assertEqual(poly.geom_type, 'Polygon')
示例#6
0
文件: test_geom.py 项目: NCPP/ocgis
    def test_init(self):
        row = Variable(value=[2, 3], name='row', dimensions='y')
        col = Variable(value=[4, 5], name='col', dimensions='x')
        grid = Grid(col, row)
        self.assertIsNone(grid.archetype.bounds)

        row = Variable(value=[2, 3], name='row', dimensions='y')
        row.set_extrapolated_bounds('row_bounds', 'bounds')
        col = Variable(value=[4, 5], name='col', dimensions='x')
        col.set_extrapolated_bounds('col_bounds', 'bounds')
        grid = Grid(y=row, x=col)
        self.assertEqual(grid.abstraction, 'polygon')
        poly = get_geometry_variable(grid)
        self.assertEqual(poly.geom_type, 'Polygon')
示例#7
0
    def test_system_parallel_write_ndvariable(self):
        """Test a parallel vector GIS write with a n-dimensional variable."""

        ompi = OcgDist()
        ompi.create_dimension('time', 3)
        ompi.create_dimension('extra', 2)
        ompi.create_dimension('x', 4)
        ompi.create_dimension('y', 7, dist=True)
        ompi.update_dimension_bounds()

        if MPI_RANK == 0:
            path = self.get_temporary_file_path('foo.shp')

            t = TemporalVariable(name='time', value=[1, 2, 3], dtype=float, dimensions='time')
            t.set_extrapolated_bounds('the_time_bounds', 'bounds')

            extra = Variable(name='extra', value=[7, 8], dimensions='extra')

            x = Variable(name='x', value=[9, 10, 11, 12], dimensions='x', dtype=float)
            x.set_extrapolated_bounds('x_bounds', 'bounds')

            # This will have the distributed dimension.
            y = Variable(name='y', value=[13, 14, 15, 16, 17, 18, 19], dimensions='y', dtype=float)
            y.set_extrapolated_bounds('y_bounds', 'bounds')

            data = Variable(name='data', value=np.random.rand(3, 2, 7, 4), dimensions=['time', 'extra', 'y', 'x'])

            dimension_map = {'x': {'variable': 'x', 'bounds': 'x_bounds'},
                             'y': {'variable': 'y', 'bounds': 'y_bounds'},
                             'time': {'variable': 'time', 'bounds': 'the_time_bounds'}}

            vc = Field(variables=[t, extra, x, y, data], dimension_map=dimension_map, is_data='data')
            vc.set_abstraction_geom()
        else:
            path, vc = [None] * 2

        path = MPI_COMM.bcast(path)
        vc = variable_collection_scatter(vc, ompi)
        with vm.scoped_by_emptyable('write', vc):
            if not vm.is_null:
                vc.write(path, driver=DriverVector)
        MPI_COMM.Barrier()

        desired = 168
        rd = RequestDataset(path, driver=DriverVector)
        sizes = MPI_COMM.gather(rd.get().geom.shape[0])
        if MPI_RANK == 0:
            self.assertEqual(sum(sizes), desired)
示例#8
0
文件: test_vector.py 项目: NCPP/ocgis
    def test_system_parallel_write_ndvariable(self):
        """Test a parallel vector GIS write with a n-dimensional variable."""

        ompi = OcgDist()
        ompi.create_dimension('time', 3)
        ompi.create_dimension('extra', 2)
        ompi.create_dimension('x', 4)
        ompi.create_dimension('y', 7, dist=True)
        ompi.update_dimension_bounds()

        if MPI_RANK == 0:
            path = self.get_temporary_file_path('foo.shp')

            t = TemporalVariable(name='time', value=[1, 2, 3], dtype=float, dimensions='time')
            t.set_extrapolated_bounds('the_time_bounds', 'bounds')

            extra = Variable(name='extra', value=[7, 8], dimensions='extra')

            x = Variable(name='x', value=[9, 10, 11, 12], dimensions='x', dtype=float)
            x.set_extrapolated_bounds('x_bounds', 'bounds')

            # This will have the distributed dimension.
            y = Variable(name='y', value=[13, 14, 15, 16, 17, 18, 19], dimensions='y', dtype=float)
            y.set_extrapolated_bounds('y_bounds', 'bounds')

            data = Variable(name='data', value=np.random.rand(3, 2, 7, 4), dimensions=['time', 'extra', 'y', 'x'])

            dimension_map = {'x': {'variable': 'x', 'bounds': 'x_bounds'},
                             'y': {'variable': 'y', 'bounds': 'y_bounds'},
                             'time': {'variable': 'time', 'bounds': 'the_time_bounds'}}

            vc = Field(variables=[t, extra, x, y, data], dimension_map=dimension_map, is_data='data')
            vc.set_abstraction_geom()
        else:
            path, vc = [None] * 2

        path = MPI_COMM.bcast(path)
        vc = variable_collection_scatter(vc, ompi)
        with vm.scoped_by_emptyable('write', vc):
            if not vm.is_null:
                vc.write(path, driver=DriverVector)
        MPI_COMM.Barrier()

        desired = 168
        rd = RequestDataset(path, driver=DriverVector)
        sizes = MPI_COMM.gather(rd.get().geom.shape[0])
        if MPI_RANK == 0:
            self.assertEqual(sum(sizes), desired)
示例#9
0
    def test_expand_grid(self):
        x = [101, 102, 103]
        y = [40, 41, 42, 43]
        vx = Variable('x', value=x, dtype=float, dimensions='xdim')
        vx.set_extrapolated_bounds('x_bnds', 'bounds')
        vy = Variable('y', value=y, dtype=float, dimensions='ydim')
        vy.set_extrapolated_bounds('y_bnds', 'bounds')

        grid = Grid(vx, vy)

        for variable in [vx, vy]:
            self.assertEqual(grid.parent[variable.name].ndim, 1)
        expand_grid(grid)

        for variable in [vx, vy]:
            self.assertEqual(grid.parent[variable.name].ndim, 2)
示例#10
0
文件: test_csv_.py 项目: NCPP/ocgis
    def test_system_parallel_write_ndvariable(self):
        """Test a parallel CSV write with a n-dimensional variable."""

        ompi = OcgDist()
        ompi.create_dimension('time', 3)
        ompi.create_dimension('extra', 2)
        ompi.create_dimension('x', 4)
        ompi.create_dimension('y', 7, dist=True)
        ompi.update_dimension_bounds()

        if MPI_RANK == 0:
            path = self.get_temporary_file_path('foo.csv')

            t = TemporalVariable(name='time', value=[1, 2, 3], dtype=float, dimensions='time')
            t.set_extrapolated_bounds('the_time_bounds', 'bounds')

            extra = Variable(name='extra', value=[7, 8], dimensions='extra')

            x = Variable(name='x', value=[9, 10, 11, 12], dimensions='x', dtype=float)
            x.set_extrapolated_bounds('x_bounds', 'bounds')

            # This will have the distributed dimension.
            y = Variable(name='y', value=[13, 14, 15, 16, 17, 18, 19], dimensions='y', dtype=float)
            y.set_extrapolated_bounds('y_bounds', 'bounds')

            data = Variable(name='data', value=np.random.rand(3, 2, 7, 4), dimensions=['time', 'extra', 'y', 'x'])

            vc = VariableCollection(variables=[t, extra, x, y, data])
        else:
            path, vc = [None] * 2

        path = MPI_COMM.bcast(path)
        vc = variable_collection_scatter(vc, ompi)

        with vm.scoped_by_emptyable('write', vc):
            if not vm.is_null:
                vc.write(path, iter_kwargs={'variable': 'data', 'followers': ['time', 'extra', 'y', 'x']},
                         driver=DriverCSV)

        if MPI_RANK == 0:
            desired = 169
            with open(path, 'r') as f:
                lines = f.readlines()
            self.assertEqual(len(lines), desired)
示例#11
0
    def test_iter_with_bounds(self):
        var = Variable(name='bounded',
                       value=[1, 2, 3, 4],
                       dtype=float,
                       dimensions='dim')
        var.set_extrapolated_bounds('the_bounds', 'bounds')

        lower = Variable(name='lower_bounds',
                         value=var.bounds.get_value()[:, 0],
                         dimensions=var.dimensions)
        upper = Variable(name='upper_bounds',
                         value=var.bounds.get_value()[:, 1],
                         dimensions=var.dimensions)

        itr = Iterator(var, followers=[lower, upper])

        actual = list(itr)

        self.assertEqual(len(actual), var.shape[0])
        self.assertEqual(len(actual[0]), 3)