def test_write_variable_collection_object_arrays(self): """Test writing variable length arrays in parallel.""" with vm.scoped('write', [0]): if not vm.is_null: path_actual = self.get_temporary_file_path('in.nc') path_desired = self.get_temporary_file_path('out.nc') value = [[1, 3, 5], [7, 9], [11]] v = Variable(name='objects', value=value, fill_value=4, dtype=ObjectType(int), dimensions='values') v.write(path_desired) else: v, path_actual, path_desired = [None] * 3 path_actual = MPI_COMM.bcast(path_actual) path_desired = MPI_COMM.bcast(path_desired) dest_mpi = OcgDist() dest_mpi.create_dimension('values', 3, dist=True) dest_mpi.update_dimension_bounds() scattered = variable_scatter(v, dest_mpi) outvc = VariableCollection(variables=[scattered]) with vm.scoped_by_emptyable('write', outvc): if not vm.is_null: outvc.write(path_actual) if MPI_RANK == 0: self.assertNcEqual(path_actual, path_desired)
def test_system_changing_field_name(self): path1 = self.get_temporary_file_path('foo1.nc') path2 = self.get_temporary_file_path('foo2.nc') vc1 = VariableCollection(name='vc1') var1 = Variable('var1', value=[1, 2, 3], dimensions='three', parent=vc1) vc2 = VariableCollection(name='vc2') vc1.add_child(vc2) var2 = Variable('var2', value=[4, 5, 6, 7], dimensions='four', parent=vc2) vc1.write(path1) rd = RequestDataset(path1) # rd.inspect() nvc = rd.get_variable_collection() nvc2 = nvc.children['vc2'] self.assertIsNone(nvc2['var2']._value) self.assertEqual(nvc2.name, 'vc2') nvc2.set_name('extraordinary') self.assertIsNotNone(nvc2['var2'].get_value()) self.assertEqual(nvc2['var2'].get_value().tolist(), [4, 5, 6, 7]) nvc.write(path2) rd2 = RequestDataset(path2) # rd2.inspect() n2vc = rd2.get_variable_collection() self.assertEqual(n2vc.children[nvc2.name].name, nvc2.name)
def test_system_changing_field_name(self): path1 = self.get_temporary_file_path('foo1.nc') path2 = self.get_temporary_file_path('foo2.nc') vc1 = VariableCollection(name='vc1') var1 = Variable('var1', value=[1, 2, 3], dimensions='three', parent=vc1) vc2 = VariableCollection(name='vc2') vc1.add_child(vc2) var2 = Variable('var2', value=[4, 5, 6, 7], dimensions='four', parent=vc2) vc1.write(path1) rd = RequestDataset(path1) # rd.inspect() nvc = rd.create_raw_field() nvc2 = nvc.children['vc2'] self.assertIsNone(nvc2['var2']._value) self.assertEqual(nvc2.name, 'vc2') nvc2.set_name('extraordinary') self.assertIsNotNone(nvc2['var2'].get_value()) self.assertEqual(nvc2['var2'].get_value().tolist(), [4, 5, 6, 7]) nvc.write(path2) rd2 = RequestDataset(path2) # rd2.inspect() n2vc = rd2.create_raw_field() self.assertEqual(n2vc.children[nvc2.name].name, nvc2.name)
def test_get_dist_default_distribution(self): """Test using default distributions defined by drivers.""" with vm.scoped('write', [0]): if not vm.is_null: path = self.get_temporary_file_path('foo.nc') varx = Variable('x', np.arange(5), dimensions='five', attrs={'axis': 'X'}) vary = Variable('y', np.arange(7) + 10, dimensions='seven', attrs={'axis': 'Y'}) vc = VariableCollection(variables=[varx, vary]) vc.write(path) else: path = None path = MPI_COMM.bcast(path) rd = RequestDataset(path) dist = rd.driver.dist distributed_dimension = dist.get_dimension('seven') self.assertTrue(distributed_dimension.dist)
def test_system_parallel_write_ndvariable(self): """Test a parallel CSV write with a n-dimensional variable.""" ompi = OcgDist() ompi.create_dimension('time', 3) ompi.create_dimension('extra', 2) ompi.create_dimension('x', 4) ompi.create_dimension('y', 7, dist=True) ompi.update_dimension_bounds() if MPI_RANK == 0: path = self.get_temporary_file_path('foo.csv') t = TemporalVariable(name='time', value=[1, 2, 3], dtype=float, dimensions='time') t.set_extrapolated_bounds('the_time_bounds', 'bounds') extra = Variable(name='extra', value=[7, 8], dimensions='extra') x = Variable(name='x', value=[9, 10, 11, 12], dimensions='x', dtype=float) x.set_extrapolated_bounds('x_bounds', 'bounds') # This will have the distributed dimension. y = Variable(name='y', value=[13, 14, 15, 16, 17, 18, 19], dimensions='y', dtype=float) y.set_extrapolated_bounds('y_bounds', 'bounds') data = Variable(name='data', value=np.random.rand(3, 2, 7, 4), dimensions=['time', 'extra', 'y', 'x']) vc = VariableCollection(variables=[t, extra, x, y, data]) else: path, vc = [None] * 2 path = MPI_COMM.bcast(path) vc = variable_collection_scatter(vc, ompi) with vm.scoped_by_emptyable('write', vc): if not vm.is_null: vc.write(path, iter_kwargs={ 'variable': 'data', 'followers': ['time', 'extra', 'y', 'x'] }, driver=DriverCSV) if MPI_RANK == 0: desired = 169 with open(path, 'r') as f: lines = f.readlines() self.assertEqual(len(lines), desired)
def test_system_parallel_write_ndvariable(self): """Test a parallel CSV write with a n-dimensional variable.""" ompi = OcgDist() ompi.create_dimension('time', 3) ompi.create_dimension('extra', 2) ompi.create_dimension('x', 4) ompi.create_dimension('y', 7, dist=True) ompi.update_dimension_bounds() if MPI_RANK == 0: path = self.get_temporary_file_path('foo.csv') t = TemporalVariable(name='time', value=[1, 2, 3], dtype=float, dimensions='time') t.set_extrapolated_bounds('the_time_bounds', 'bounds') extra = Variable(name='extra', value=[7, 8], dimensions='extra') x = Variable(name='x', value=[9, 10, 11, 12], dimensions='x', dtype=float) x.set_extrapolated_bounds('x_bounds', 'bounds') # This will have the distributed dimension. y = Variable(name='y', value=[13, 14, 15, 16, 17, 18, 19], dimensions='y', dtype=float) y.set_extrapolated_bounds('y_bounds', 'bounds') data = Variable(name='data', value=np.random.rand(3, 2, 7, 4), dimensions=['time', 'extra', 'y', 'x']) vc = VariableCollection(variables=[t, extra, x, y, data]) else: path, vc = [None] * 2 path = MPI_COMM.bcast(path) vc = variable_collection_scatter(vc, ompi) with vm.scoped_by_emptyable('write', vc): if not vm.is_null: vc.write(path, iter_kwargs={'variable': 'data', 'followers': ['time', 'extra', 'y', 'x']}, driver=DriverCSV) if MPI_RANK == 0: desired = 169 with open(path, 'r') as f: lines = f.readlines() self.assertEqual(len(lines), desired)
def test_system_renaming_dimensions_on_variables(self): var1 = Variable(name='var1', value=[1, 2], dimensions='dim') var2 = Variable(name='var2', value=[3, 4], dimensions='dim') vc = VariableCollection(variables=[var1, var2]) path = self.get_temporary_file_path('out.nc') vc.write(path) rd = RequestDataset(path) meta = rd.metadata meta['dimensions']['new_dim'] = {'size': 2} meta['variables']['var2']['dimensions'] = ('new_dim',) field = rd.get() self.assertEqual(field['var2'].dimensions[0].name, 'new_dim') self.assertEqual(field['var2'].get_value().tolist(), [3, 4]) path2 = self.get_temporary_file_path('out2.nc') field.write(path2) rd2 = RequestDataset(path2) field2 = rd2.get() self.assertEqual(field2['var2'].dimensions[0].name, 'new_dim') self.assertEqual(field2['var2'].get_value().tolist(), [3, 4])
def write_subsets(self, src_template, dst_template, wgt_template, index_path): """ Write grid subsets to netCDF files using the provided filename templates. The template must contain the full file path with a single curly-bracer pair to insert the combination counter. ``wgt_template`` should not be a full path. This name is used when generating weight files. >>> template_example = '/path/to/data_{}.nc' :param str src_template: The template for the source subset file. :param str dst_template: The template for the destination subset file. :param str wgt_template: The template for the weight filename. >>> wgt_template = 'esmf_weights_{}.nc' :param index_path: Path to the output indexing netCDF. """ src_filenames = [] dst_filenames = [] wgt_filenames = [] dst_slices = [] # nzeros = len(str(reduce(lambda x, y: x * y, self.nsplits_dst))) for ctr, (sub_src, sub_dst, dst_slc) in enumerate(self.iter_src_grid_subsets(yield_dst=True), start=1): # padded = create_zero_padded_integer(ctr, nzeros) src_path = src_template.format(ctr) dst_path = dst_template.format(ctr) wgt_filename = wgt_template.format(ctr) src_filenames.append(os.path.split(src_path)[1]) dst_filenames.append(os.path.split(dst_path)[1]) wgt_filenames.append(wgt_filename) dst_slices.append(dst_slc) for target, path in zip([sub_src, sub_dst], [src_path, dst_path]): if target.is_empty: is_empty = True target = None else: is_empty = False field = Field(grid=target, is_empty=is_empty) ocgis_lh(msg='writing: {}'.format(path), level=logging.DEBUG) with vm.scoped_by_emptyable('field.write', field): if not vm.is_null: field.write(path) ocgis_lh(msg='finished writing: {}'.format(path), level=logging.DEBUG) with vm.scoped('index write', [0]): if not vm.is_null: dim = Dimension('nfiles', len(src_filenames)) vname = ['source_filename', 'destination_filename', 'weights_filename'] values = [src_filenames, dst_filenames, wgt_filenames] grid_splitter_destination = GridSplitterConstants.IndexFile.NAME_DESTINATION_VARIABLE attrs = [{'esmf_role': 'grid_splitter_source'}, {'esmf_role': grid_splitter_destination}, {'esmf_role': 'grid_splitter_weights'}] vc = VariableCollection() grid_splitter_index = GridSplitterConstants.IndexFile.NAME_INDEX_VARIABLE vidx = Variable(name=grid_splitter_index) vidx.attrs['esmf_role'] = grid_splitter_index vidx.attrs['grid_splitter_source'] = 'source_filename' vidx.attrs[GridSplitterConstants.IndexFile.NAME_DESTINATION_VARIABLE] = 'destination_filename' vidx.attrs['grid_splitter_weights'] = 'weights_filename' x_bounds = GridSplitterConstants.IndexFile.NAME_X_BOUNDS_VARIABLE vidx.attrs[x_bounds] = x_bounds y_bounds = GridSplitterConstants.IndexFile.NAME_Y_BOUNDS_VARIABLE vidx.attrs[y_bounds] = y_bounds vc.add_variable(vidx) for idx in range(len(vname)): v = Variable(name=vname[idx], dimensions=dim, dtype=str, value=values[idx], attrs=attrs[idx]) vc.add_variable(v) bounds_dimension = Dimension(name='bounds', size=2) xb = Variable(name=x_bounds, dimensions=[dim, bounds_dimension], attrs={'esmf_role': 'x_split_bounds'}, dtype=int) yb = Variable(name=y_bounds, dimensions=[dim, bounds_dimension], attrs={'esmf_role': 'y_split_bounds'}, dtype=int) x_name = self.dst_grid.x.dimensions[0].name y_name = self.dst_grid.y.dimensions[0].name for idx, slc in enumerate(dst_slices): xb.get_value()[idx, :] = slc[x_name].start, slc[x_name].stop yb.get_value()[idx, :] = slc[y_name].start, slc[y_name].stop vc.add_variable(xb) vc.add_variable(yb) vc.write(index_path) vm.barrier()
def write_chunks(self): """ Write grid subsets to netCDF files using the provided filename templates. This will also generate ESMF regridding weights for each subset if requested. """ src_filenames = [] dst_filenames = [] wgt_filenames = [] dst_slices = [] src_slices = [] index_path = self.create_full_path_from_template('index_file') # nzeros = len(str(reduce(lambda x, y: x * y, self.nchunks_dst))) ctr = 1 ocgis_lh(logger=_LOCAL_LOGGER, msg='starting self.iter_src_grid_subsets', level=logging.DEBUG) for sub_src, src_slc, sub_dst, dst_slc in self.iter_src_grid_subsets( yield_dst=True): ocgis_lh( logger=_LOCAL_LOGGER, msg='finished iteration {} for self.iter_src_grid_subsets'. format(ctr), level=logging.DEBUG) src_path = self.create_full_path_from_template('src_template', index=ctr) dst_path = self.create_full_path_from_template('dst_template', index=ctr) wgt_path = self.create_full_path_from_template('wgt_template', index=ctr) src_filenames.append(os.path.split(src_path)[1]) dst_filenames.append(os.path.split(dst_path)[1]) wgt_filenames.append(wgt_path) dst_slices.append(dst_slc) src_slices.append(src_slc) # Only write destinations if an iterator is not provided. if self.iter_dst is None: zip_args = [[sub_src, sub_dst], [src_path, dst_path]] else: zip_args = [[sub_src], [src_path]] cc = 1 for target, path in zip(*zip_args): with vm.scoped_by_emptyable('field.write' + str(cc), target): if not vm.is_null: ocgis_lh(logger=_LOCAL_LOGGER, msg='write_chunks:writing: {}'.format(path), level=logging.DEBUG) field = Field(grid=target) field.write(path) ocgis_lh( logger=_LOCAL_LOGGER, msg='write_chunks:finished writing: {}'.format( path), level=logging.DEBUG) cc += 1 # Increment the counter outside of the loop to avoid counting empty subsets. ctr += 1 # Generate an ESMF weights file if requested and at least one rank has data on it. if self.genweights and len( vm.get_live_ranks_from_object(sub_src)) > 0: vm.barrier() ocgis_lh(logger=_LOCAL_LOGGER, msg='write_chunks:writing esmf weights: {}'.format( wgt_path), level=logging.DEBUG) self.write_esmf_weights(src_path, dst_path, wgt_path, src_grid=sub_src, dst_grid=sub_dst) vm.barrier() # Global shapes require a VM global scope to collect. src_global_shape = global_grid_shape(self.src_grid) dst_global_shape = global_grid_shape(self.dst_grid) # Gather and collapse source slices as some may be empty and we write on rank 0. gathered_src_grid_slice = vm.gather(src_slices) if vm.rank == 0: len_src_slices = len(src_slices) new_src_grid_slice = [None] * len_src_slices for idx in range(len_src_slices): for rank_src_grid_slice in gathered_src_grid_slice: if rank_src_grid_slice[idx] is not None: new_src_grid_slice[idx] = rank_src_grid_slice[idx] break src_slices = new_src_grid_slice with vm.scoped('index write', [0]): if not vm.is_null: dim = Dimension('nfiles', len(src_filenames)) vname = [ 'source_filename', 'destination_filename', 'weights_filename' ] values = [src_filenames, dst_filenames, wgt_filenames] grid_chunker_destination = GridChunkerConstants.IndexFile.NAME_DESTINATION_VARIABLE attrs = [{ 'esmf_role': 'grid_chunker_source' }, { 'esmf_role': grid_chunker_destination }, { 'esmf_role': 'grid_chunker_weights' }] vc = VariableCollection() grid_chunker_index = GridChunkerConstants.IndexFile.NAME_INDEX_VARIABLE vidx = Variable(name=grid_chunker_index) vidx.attrs['esmf_role'] = grid_chunker_index vidx.attrs['grid_chunker_source'] = 'source_filename' vidx.attrs[GridChunkerConstants.IndexFile. NAME_DESTINATION_VARIABLE] = 'destination_filename' vidx.attrs['grid_chunker_weights'] = 'weights_filename' vidx.attrs[GridChunkerConstants.IndexFile. NAME_SRC_GRID_SHAPE] = src_global_shape vidx.attrs[GridChunkerConstants.IndexFile. NAME_DST_GRID_SHAPE] = dst_global_shape vc.add_variable(vidx) for idx in range(len(vname)): v = Variable(name=vname[idx], dimensions=dim, dtype=str, value=values[idx], attrs=attrs[idx]) vc.add_variable(v) bounds_dimension = Dimension(name='bounds', size=2) # TODO: This needs to work with four dimensions. # Source ----------------------------------------------------------------------------------------------- self.src_grid._gc_create_index_bounds_(RegriddingRole.SOURCE, vidx, vc, src_slices, dim, bounds_dimension) # Destination ------------------------------------------------------------------------------------------ self.dst_grid._gc_create_index_bounds_( RegriddingRole.DESTINATION, vidx, vc, dst_slices, dim, bounds_dimension) vc.write(index_path) vm.barrier()
def create_merged_weight_file(self, merged_weight_filename, strict=False): """ Merge weight file chunks to a single, global weight file. :param str merged_weight_filename: Path to the merged weight file. :param bool strict: If ``False``, allow "missing" files where the iterator index cannot create a found file. It is best to leave these ``False`` as not all source and destinations are mapped. If ``True``, raise an """ if vm.size > 1: raise ValueError( "'create_merged_weight_file' does not work in parallel") index_filename = self.create_full_path_from_template('index_file') ifile = RequestDataset(uri=index_filename).get() ifile.load() ifc = GridChunkerConstants.IndexFile gidx = ifile[ifc.NAME_INDEX_VARIABLE].attrs src_global_shape = gidx[ifc.NAME_SRC_GRID_SHAPE] dst_global_shape = gidx[ifc.NAME_DST_GRID_SHAPE] # Get the global weight dimension size. n_s_size = 0 weight_filename = ifile[gidx[ifc.NAME_WEIGHTS_VARIABLE]] wv = weight_filename.join_string_value() split_weight_file_directory = self.paths['wd'] for wfn in map( lambda x: os.path.join(split_weight_file_directory, os.path.split(x)[1]), wv): ocgis_lh(msg="current merge weight file target: {}".format(wfn), level=logging.DEBUG, logger=_LOCAL_LOGGER) if not os.path.exists(wfn): if strict: raise IOError(wfn) else: continue curr_dimsize = RequestDataset(wfn).get().dimensions['n_s'].size # ESMF writes the weight file, but it may be empty if there are no generated weights. if curr_dimsize is not None: n_s_size += curr_dimsize # Create output weight file. wf_varnames = ['row', 'col', 'S'] wf_dtypes = [np.int32, np.int32, np.float64] vc = VariableCollection() dim = Dimension('n_s', n_s_size) for w, wd in zip(wf_varnames, wf_dtypes): var = Variable(name=w, dimensions=dim, dtype=wd) vc.add_variable(var) vc.write(merged_weight_filename) # Transfer weights to the merged file. sidx = 0 src_indices = self.src_grid._gc_create_global_indices_( src_global_shape) dst_indices = self.dst_grid._gc_create_global_indices_( dst_global_shape) out_wds = nc.Dataset(merged_weight_filename, 'a') for ii, wfn in enumerate( map(lambda x: os.path.join(split_weight_file_directory, x), wv)): if not os.path.exists(wfn): if strict: raise IOError(wfn) else: continue wdata = RequestDataset(wfn).get() for wvn in wf_varnames: odata = wdata[wvn].get_value() try: split_grids_directory = self.paths['wd'] odata = self._gc_remap_weight_variable_( ii, wvn, odata, src_indices, dst_indices, ifile, gidx, split_grids_directory=split_grids_directory) except IndexError as e: msg = "Weight filename: '{}'; Weight Variable Name: '{}'. {}".format( wfn, wvn, str(e)) raise IndexError(msg) out_wds[wvn][sidx:sidx + odata.size] = odata out_wds.sync() sidx += odata.size out_wds.close()
def write_chunks(self): """ Write grid subsets to netCDF files using the provided filename templates. This will also generate ESMF regridding weights for each subset if requested. """ src_filenames = [] dst_filenames = [] wgt_filenames = [] dst_slices = [] src_slices = [] index_path = self.create_full_path_from_template('index_file') # nzeros = len(str(reduce(lambda x, y: x * y, self.nchunks_dst))) ctr = 1 ocgis_lh(logger='grid_chunker', msg='starting self.iter_src_grid_subsets', level=logging.DEBUG) for sub_src, src_slc, sub_dst, dst_slc in self.iter_src_grid_subsets(yield_dst=True): ocgis_lh(logger='grid_chunker', msg='finished iteration {} for self.iter_src_grid_subsets'.format(ctr), level=logging.DEBUG) src_path = self.create_full_path_from_template('src_template', index=ctr) dst_path = self.create_full_path_from_template('dst_template', index=ctr) wgt_path = self.create_full_path_from_template('wgt_template', index=ctr) src_filenames.append(os.path.split(src_path)[1]) dst_filenames.append(os.path.split(dst_path)[1]) wgt_filenames.append(wgt_path) dst_slices.append(dst_slc) src_slices.append(src_slc) # Only write destinations if an iterator is not provided. if self.iter_dst is None: zip_args = [[sub_src, sub_dst], [src_path, dst_path]] else: zip_args = [[sub_src], [src_path]] cc = 1 for target, path in zip(*zip_args): with vm.scoped_by_emptyable('field.write' + str(cc), target): if not vm.is_null: ocgis_lh(logger='grid_chunker', msg='write_chunks:writing: {}'.format(path), level=logging.DEBUG) field = Field(grid=target) field.write(path) ocgis_lh(logger='grid_chunker', msg='write_chunks:finished writing: {}'.format(path), level=logging.DEBUG) cc += 1 # Increment the counter outside of the loop to avoid counting empty subsets. ctr += 1 # Generate an ESMF weights file if requested and at least one rank has data on it. if self.genweights and len(vm.get_live_ranks_from_object(sub_src)) > 0: vm.barrier() self.write_esmf_weights(src_path, dst_path, wgt_path, src_grid=sub_src, dst_grid=sub_dst) vm.barrier() # Global shapes require a VM global scope to collect. src_global_shape = global_grid_shape(self.src_grid) dst_global_shape = global_grid_shape(self.dst_grid) # Gather and collapse source slices as some may be empty and we write on rank 0. gathered_src_grid_slice = vm.gather(src_slices) if vm.rank == 0: len_src_slices = len(src_slices) new_src_grid_slice = [None] * len_src_slices for idx in range(len_src_slices): for rank_src_grid_slice in gathered_src_grid_slice: if rank_src_grid_slice[idx] is not None: new_src_grid_slice[idx] = rank_src_grid_slice[idx] break src_slices = new_src_grid_slice with vm.scoped('index write', [0]): if not vm.is_null: dim = Dimension('nfiles', len(src_filenames)) vname = ['source_filename', 'destination_filename', 'weights_filename'] values = [src_filenames, dst_filenames, wgt_filenames] grid_chunker_destination = GridChunkerConstants.IndexFile.NAME_DESTINATION_VARIABLE attrs = [{'esmf_role': 'grid_chunker_source'}, {'esmf_role': grid_chunker_destination}, {'esmf_role': 'grid_chunker_weights'}] vc = VariableCollection() grid_chunker_index = GridChunkerConstants.IndexFile.NAME_INDEX_VARIABLE vidx = Variable(name=grid_chunker_index) vidx.attrs['esmf_role'] = grid_chunker_index vidx.attrs['grid_chunker_source'] = 'source_filename' vidx.attrs[GridChunkerConstants.IndexFile.NAME_DESTINATION_VARIABLE] = 'destination_filename' vidx.attrs['grid_chunker_weights'] = 'weights_filename' vidx.attrs[GridChunkerConstants.IndexFile.NAME_SRC_GRID_SHAPE] = src_global_shape vidx.attrs[GridChunkerConstants.IndexFile.NAME_DST_GRID_SHAPE] = dst_global_shape vc.add_variable(vidx) for idx in range(len(vname)): v = Variable(name=vname[idx], dimensions=dim, dtype=str, value=values[idx], attrs=attrs[idx]) vc.add_variable(v) bounds_dimension = Dimension(name='bounds', size=2) # TODO: This needs to work with four dimensions. # Source ----------------------------------------------------------------------------------------------- self.src_grid._gc_create_index_bounds_(RegriddingRole.SOURCE, vidx, vc, src_slices, dim, bounds_dimension) # Destination ------------------------------------------------------------------------------------------ self.dst_grid._gc_create_index_bounds_(RegriddingRole.DESTINATION, vidx, vc, dst_slices, dim, bounds_dimension) vc.write(index_path) vm.barrier()
def create_merged_weight_file(self, merged_weight_filename, strict=False): """ Merge weight file chunks to a single, global weight file. :param str merged_weight_filename: Path to the merged weight file. :param bool strict: If ``False``, allow "missing" files where the iterator index cannot create a found file. It is best to leave these ``False`` as not all source and destinations are mapped. If ``True``, raise an """ if vm.size > 1: raise ValueError("'create_merged_weight_file' does not work in parallel") index_filename = self.create_full_path_from_template('index_file') ifile = RequestDataset(uri=index_filename).get() ifile.load() ifc = GridChunkerConstants.IndexFile gidx = ifile[ifc.NAME_INDEX_VARIABLE].attrs src_global_shape = gidx[ifc.NAME_SRC_GRID_SHAPE] dst_global_shape = gidx[ifc.NAME_DST_GRID_SHAPE] # Get the global weight dimension size. n_s_size = 0 weight_filename = ifile[gidx[ifc.NAME_WEIGHTS_VARIABLE]] wv = weight_filename.join_string_value() split_weight_file_directory = self.paths['wd'] for wfn in map(lambda x: os.path.join(split_weight_file_directory, os.path.split(x)[1]), wv): if not os.path.exists(wfn): if strict: raise IOError(wfn) else: continue n_s_size += RequestDataset(wfn).get().dimensions['n_s'].size # Create output weight file. wf_varnames = ['row', 'col', 'S'] wf_dtypes = [np.int32, np.int32, np.float64] vc = VariableCollection() dim = Dimension('n_s', n_s_size) for w, wd in zip(wf_varnames, wf_dtypes): var = Variable(name=w, dimensions=dim, dtype=wd) vc.add_variable(var) vc.write(merged_weight_filename) # Transfer weights to the merged file. sidx = 0 src_indices = self.src_grid._gc_create_global_indices_(src_global_shape) dst_indices = self.dst_grid._gc_create_global_indices_(dst_global_shape) out_wds = nc.Dataset(merged_weight_filename, 'a') for ii, wfn in enumerate(map(lambda x: os.path.join(split_weight_file_directory, x), wv)): if not os.path.exists(wfn): if strict: raise IOError(wfn) else: continue wdata = RequestDataset(wfn).get() for wvn in wf_varnames: odata = wdata[wvn].get_value() try: split_grids_directory = self.paths['wd'] odata = self._gc_remap_weight_variable_(ii, wvn, odata, src_indices, dst_indices, ifile, gidx, split_grids_directory=split_grids_directory) except IndexError as e: msg = "Weight filename: '{}'; Weight Variable Name: '{}'. {}".format(wfn, wvn, str(e)) raise IndexError(msg) out_wds[wvn][sidx:sidx + odata.size] = odata out_wds.sync() sidx += odata.size out_wds.close()