def _pre_process_image(img_in, _parse_method):
    im = cv2.imread(img_in, cv2.IMREAD_GRAYSCALE)
    if np.size(im) == 1:  # skip if the image data is corrupt.
        return None
    # reduce the size of form images so that it can fit in memory.
    if _parse_method in ["form", "form_bb"]:
        im, _ = resize_image(im, MAX_IMAGE_SIZE_FORM)
    if _parse_method == "line":
        im, _ = resize_image(im, MAX_IMAGE_SIZE_LINE)
    if _parse_method == "word":
        im, _ = resize_image(im, MAX_IMAGE_SIZE_WORD)
    img_arr = np.asarray(im)
    return img_arr
def handwriting_recognition_transform(image):
    image, _ = resize_image(image, line_image_size)
    image = mx.nd.array(image) / 255.
    image = (image - 0.942532484060557) / 0.15926149044640417
    image = image.as_in_context(ctx)
    image = image.expand_dims(0).expand_dims(0)
    return image
示例#3
0
 def __getitem__(self, idx):
     filename, text = self.data[idx]
     image = cv2.imread(filename, 0)
     return resize_image(np.expand_dims(image, axis=2), (60, 200))[0], text