def process_arguments(): parser = ArgParserWithDefaultHelp(description='Extract frames sample tool from several folders') parser.add_argument('folder', help='Folder, that contains folders with frames') parser.add_argument('output', help='Folder, to copy selected frames') parser.add_argument('-s', '--size', dest='size', default='middle', choices=['large', 'middle', 'small', 'extrasmall'], help='Size of sample') parser.add_argument('--save-structure', dest='saveStructure', action='store_true', help='Save folder structure in output folder') parser.set_defaults(saveStructure=False) return parser.parse_args()
def process_arguments(): parser = ArgParserWithDefaultHelp(description='Images test classifier tool') parser.add_argument('classifier', help='Classifier') parser.add_argument('folder', help='Folders with frames (divided into two parts: positive and negative examples') parser.add_argument('-o', '--output', help='Incorrect results folder') parser.add_argument('--save-correct', dest='save_correct', action='store_true', help='Save correct determined images') parser.add_argument('-j', '--jobs', default=-1, type=int, help='Processes amount for feature extraction') parser.add_argument('--verbose', dest='verbose', action='store_true', help='Debug output') parser.set_defaults(save_correct=False) parser.set_defaults(verbose=False) return parser.parse_args()
def process_arguments(): parser = ArgParserWithDefaultHelp(description="Dataset creation tool from several folders") parser.add_argument("folder", help="Folder, that contains folders with frames") parser.add_argument("train", help="Train dataset") parser.add_argument("test", help="Test dataset") parser.add_argument("--train_files", default=None, help="File with list of images, that included in train set") parser.add_argument("--test_files", default=None, help="File with list of images, that included in test set") parser.add_argument( "-p", "--positive-fragments-folder", dest="positive_fragments_folder", default=None, help="Folder to put positive fragments of frames", ) parser.add_argument("-t", "--type", default="large", choices=["large", "small"], help="Size of train set") parser.add_argument( "-m", "--negmult", default=3, type=int, help="Negative multiplicator: how more negative examples than positive" ) parser.add_argument( "-n", "--neighbours-for-positive", dest="neighbours", default=7, type=int, help="Generate this neighbours amount for every positive window", ) parser.add_argument("-j", "--jobs", default=-1, type=int, help="Processes amount for feature extraction") parser.add_argument( "-o", "--dataset-type", dest="dataset_type", default="csv", choices=["pkl", "csv"], help="Type of dataset output", ) parser.add_argument("-w", "--window-size", dest="window_size", default=64, type=int, help="Window size") parser.add_argument("-s", "--shift-size", dest="shift_size", default=32, type=int, help="Shift size") parser.add_argument( "-r", "--features-window-size", dest="features_window_size", default=32, type=int, help="Features window size" ) parser.add_argument( "-f", "--features-type", dest="features_type", default="hog", choices=["hog", "daisy"], help="Features detector" ) parser.add_argument( "--only-first-symbol", dest="first_symbol_tag", action="store_true", help="Positive only on first symbol from tag", ) parser.set_defaults(first_symbol_tag=False) return parser.parse_args()