示例#1
0
 def skelton(self):
     layers = QtGui.QInputDialog.getInteger(self, '# of layers',"Enter your # of Layers \nincluding input but not output")
     layers = layers[0]
     size_layers = []
     size_layers.extend([0]*layers)
     for i in range(len(size_layers)):
         size_layers[i] = QtGui.QInputDialog.getInteger(self, 'Size of layer',"Enter the size of Layer each layer")[0]
     size_layers.append(1)
     size_layers.insert(0,500)
     self.n = nt.neuralnet(*size_layers)
     self.d = ds.dataset(size_layers[0],1)
     self.d.generateDataSet()
     self.n.loadTrainingData(self.d.getTrainingDataset())
示例#2
0
    def __init__(self, parent=None):
        super(ExampleApp, self).__init__(parent)
        self.setupUi(self)
#        palette = QtGui.QPalette()
#        palette.setBrush(palette.Background,QtGui.QBrush(QtGui.QPixmap("waves.jpg")))        
#        self.setPalette(palette)
        self.lineEdit.setDragEnabled(True)
        self.lineEdit.setAcceptDrops(True)
        self.progressBar =self.progressBar
        self.Teach.clicked.connect(self.generations)
        self.Open_file.clicked.connect(self.file_open)
        self.Quit.clicked.connect(self.close_app)
        self.n = nt.neuralnet(500,300,100,1)
        self.d = ds.dataset(500,1)
        self.d.generateDataSet()
        self.n.loadTrainingData(self.d.getTrainingDataset())
        self.setWindowIcon(QtGui.QIcon('wolf.png'))
        self.setWindowTitle("OCR GUI by Bryan Moore")
        self.construct.clicked.connect(self.skelton)
示例#3
0
from ocrn import dataset as ds
from ocrn import feature as ft
from ocrn import neuralnet as nt
import numpy as np

print "Ocrn: Optical Character Recognition using Neural Network\nLatest version available at http://github.com/swvist\n"

n = nt.neuralnet(100,80,1)
print "Neural Network Initialized"

d = ds.dataset(100,1)
print "Training Data Set Initialized"

if d.generateDataSet():
	print "Training Data Set Generated"

if n.loadTrainingData(d.getTrainingDataset()):
	print "Training Data Set loaded"

while(True):
	x = raw_input("q: quit \t t: teach \t e: test \nWhat?\t:\t")
	if x == "q":
		break
	elif x == "t":
		t = int(raw_input("How many times?\t:\t"))
		#n.teach(t)
		n.teachUntilConvergence(max=t)
	elif x == "e":
		e = raw_input("Enter input file\t:\t")
		x = n.activate(ft.feature.getImageFeatureVector(e))
		print "\nThere is a high probability that the image is '"+str(chr(x))+"'\n"
示例#4
0
文件: main.py 项目: palfaiate/Ocrn
from ocrn import dataset as ds
from ocrn import feature as ft
from ocrn import neuralnet as nt
import numpy as np

print "Ocrn: Optical Character Recognition using Neural Network\nLatest version available at http://github.com/swvist\n"

n = nt.neuralnet(100,80,1)
print "Neural Network Initialized"

d = ds.dataset(100,1)
print "Training Data Set Initialized"

if d.generateDataSet():
	print "Training Data Set Generated"

if n.loadTrainingData(d.getTrainingDataset()):
	print "Training Data Set loaded"

while(True):
	x = raw_input("q: quit \t t: teach \t e: test \nWhat?\t:\t")
	if x == "q":
		break
	elif x == "t":
		t = int(raw_input("How many times?\t:\t"))
		n.teach(t)
	elif x == "e":
		e = raw_input("Enter input file\t:\t")
		x = n.activate(ft.feature.getImageFeatureVector(e))
		print "\nThere is a high probability that the image is '"+str(unichr(x))+"'\n"
	else:
示例#5
0
from ocrn import dataset as ds
from ocrn import feature as ft
from ocrn import neuralnet as nt
import numpy as np

print "\n \nOCR Prototype: Neural Networks w/ training data and test data \n \n"

n = nt.neuralnet(500,100,1)
print "Neural Network Initialized"

d = ds.dataset(500,1)
print "Training Data Set Initialized"

if d.generateDataSet():
	print "Training Data Set Generated"

if n.loadTrainingData(d.getTrainingDataset()):
	print "Training Data Set loaded"

while(True):
	x = raw_input("q: quit \t t: teach \t e: test \nWhat?\t:\t")
	if x == "q":
		break
	elif x == "t":
		t = int(raw_input("How many times do you want to train your data?\t:\t"))
		n.teach(t)
	elif x == "e":
		e = raw_input("Enter input file, make sure it is the absolute form and NOT in the string form\t:\t")
		x = n.activate(ft.feature.getImageFeatureVector(e))
		print "\nThe highest probability letter from that the image is '"+str(unichr(x))+"'\n"
	else:
示例#6
0
	def __init__(self):
		""" 
		Create a __new__ Grinder object.
		"""
		self.neural_network = nn.neuralnet(100,80,1)
		self.data_set 		= ds.dataset(100,1)
示例#7
0
	def reset(self):
		self.neural_network = nn.neuralnet(100,80,1)
		self.data_set 		= ds.dataset(100,1)