示例#1
0
def test_model_output_lda_tomotopy(data_dir):
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(data_dir + '/M10')
    num_topics = 3
    model = LDATOMOTO(num_topics=num_topics, alpha=0.1)
    output = model.train_model(dataset)
    assert 'topics' in output.keys()
    assert 'topic-word-matrix' in output.keys()
    assert 'test-topic-document-matrix' in output.keys()

    # check topics format
    assert type(output['topics']) == list
    assert len(output['topics']) == num_topics

    # check topic-word-matrix format
    assert type(output['topic-word-matrix']) == np.ndarray
    assert output['topic-word-matrix'].shape == (num_topics,
                                                 len(dataset.get_vocabulary()))

    # check topic-document-matrix format
    assert type(output['topic-document-matrix']) == np.ndarray
    assert output['topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[0]))

    # check test-topic-document-matrix format
    assert type(output['test-topic-document-matrix']) == np.ndarray
    assert output['test-topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[2]))
示例#2
0
def test_model_output_ctm_combined(data_dir):
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(data_dir + '/M10')
    num_topics = 3
    model = CTM(num_topics=num_topics, num_epochs=5, inference_type='combined')
    output = model.train_model(dataset)
    assert 'topics' in output.keys()
    assert 'topic-word-matrix' in output.keys()
    assert 'test-topic-document-matrix' in output.keys()

    # check topics format
    assert type(output['topics']) == list
    assert len(output['topics']) == num_topics

    # check topic-word-matrix format
    assert type(output['topic-word-matrix']) == np.ndarray
    assert output['topic-word-matrix'].shape == (num_topics,
                                                 len(dataset.get_vocabulary()))

    # check topic-document-matrix format
    assert type(output['topic-document-matrix']) == np.ndarray
    assert output['topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[0]))

    # check test-topic-document-matrix format
    assert type(output['test-topic-document-matrix']) == np.ndarray
    assert output['test-topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[2]))
示例#3
0
def test_model_output_nmf(data_dir):
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(data_dir + '/M10')
    num_topics = 3
    model = NMF(num_topics=num_topics,
                w_max_iter=10,
                h_max_iter=10,
                use_partitions=True)
    output = model.train_model(dataset)
    assert 'topics' in output.keys()
    assert 'topic-word-matrix' in output.keys()
    assert 'test-topic-document-matrix' in output.keys()

    # check topics format
    assert type(output['topics']) == list
    assert len(output['topics']) == num_topics

    # check topic-word-matrix format
    assert type(output['topic-word-matrix']) == np.ndarray
    assert output['topic-word-matrix'].shape == (num_topics,
                                                 len(dataset.get_vocabulary()))

    # check topic-document-matrix format
    assert type(output['topic-document-matrix']) == np.ndarray
    assert output['topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[0]))

    # check test-topic-document-matrix format
    assert type(output['test-topic-document-matrix']) == np.ndarray
    assert output['test-topic-document-matrix'].shape == (
        num_topics, len(dataset.get_partitioned_corpus()[2]))
示例#4
0
def test_model_output_prodlda_not_partitioned(data_dir):
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(data_dir + '/M10')
    num_topics = 3
    model = ProdLDA(num_topics=num_topics, num_epochs=5, use_partitions=False)
    output = model.train_model(dataset)
    assert 'topics' in output.keys()
    assert 'topic-word-matrix' in output.keys()
    assert 'test-topic-document-matrix' not in output.keys()

    # check topics format
    assert type(output['topics']) == list
    assert len(output['topics']) == num_topics

    # check topic-word-matrix format
    assert type(output['topic-word-matrix']) == np.ndarray
    assert output['topic-word-matrix'].shape == (num_topics, len(dataset.get_vocabulary()))

    # check topic-document-matrix format
    assert type(output['topic-document-matrix']) == np.ndarray
    assert output['topic-document-matrix'].shape == (num_topics, len(dataset.get_corpus()))
示例#5
0
def test_partitions_custom(data_dir):
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(data_dir + "M10")
    partitions = dataset.get_partitioned_corpus()
    assert len(partitions[0]) == 5847
    assert len(partitions[1]) == 1254
示例#6
0
def dataset(data_dir):
    # Load dataset
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(data_dir + '/M10')

    return dataset
def dataset(root_dir):
    dataset = Dataset()
    dataset.load_custom_dataset_from_folder(root_dir + "/../preprocessed_datasets/" + '/M10')
    return dataset
示例#8
0
    def _restore_parameters(self, name_path):
        """
        Restore the BO parameters  from the json file

        :param name_path: name of the json file
        :type name_path: str
        :return: result of BO optimization (scikit-optimize object), surrogate model (scikit-learn object)
        :rtype: tuple
        """

        # Load the previous results
        with open(name_path, 'rb') as file:
            optimization_object = json.load(file)

        self.search_space = load_search_space(optimization_object["search_space"])
        self.acq_func = optimization_object["acq_func"]
        self.surrogate_model = optimization_object["surrogate_model"]
        self.kernel = eval(optimization_object["kernel"])
        self.optimization_type = optimization_object["optimization_type"]
        self.model_runs = optimization_object["model_runs"]
        self.save_models = optimization_object["save_models"]
        self.save_step = optimization_object["save_step"]
        self.save_name = optimization_object["save_name"]
        self.save_models = optimization_object["save_models"]
        self.save_path = optimization_object["save_path"]
        self.early_stop = optimization_object["early_stop"]
        self.early_step = optimization_object["early_step"]
        self.plot_model = optimization_object["plot_model"]
        self.plot_best_seen = optimization_object["plot_best_seen"]
        self.plot_name = optimization_object["plot_name"]
        self.log_scale_plot = optimization_object["log_scale_plot"]
        self.random_state = optimization_object["random_state"]
        self.dict_model_runs = optimization_object['dict_model_runs']
        self.number_of_previous_calls = optimization_object['current_call'] + 1
        self.current_call = optimization_object['current_call'] + 1
        self.number_of_call = optimization_object['number_of_call']
        self.save_path = optimization_object['save_path']
        self.x0 = optimization_object['x0']
        self.y0 = optimization_object['y0']
        self.n_random_starts = optimization_object['n_random_starts']
        self.initial_point_generator = optimization_object['initial_point_generator']
        self.topk = optimization_object['topk']
        self.time_eval = optimization_object["time_eval"]
        res = None

        # Load the dataset
        dataset = Dataset()
        if not optimization_object["is_cached"]:
            dataset.load_custom_dataset_from_folder(optimization_object["dataset_path"])
        else:
            dp = optimization_object["dataset_path"][:-(len(optimization_object["dataset_name"]) + len("_py3.pkz"))]
            dataset.fetch_dataset(optimization_object["dataset_name"], data_home=dp)

        self.dataset = dataset

        # Load the metric
        self._load_metric(optimization_object, dataset)

        # Load the model
        self.model = load_model(optimization_object)
        # Creation of the hyperparameters
        self.hyperparameters = list(sorted(self.search_space.keys()))
        # Choice of the optimizer
        opt = choose_optimizer(self)

        # Update number_of_call for restarting
        for i in range(self.number_of_previous_calls):
            next_x = [optimization_object["x_iters"][key][i] for key in self.hyperparameters]
            f_val = -optimization_object["f_val"][i] if self.optimization_type == 'Maximize' else \
                optimization_object["f_val"][i]
            res = opt.tell(next_x, f_val)

            # Create the directory where the results are saved
        Path(self.save_path).mkdir(parents=True, exist_ok=True)

        self.model_path_models = self.save_path + "models/"

        return res, opt