def _get_exchange_current_time(self, exchange_name, matrix_id): try: import octobot_trading.api as exchange_api exchange_manager = exchange_api.get_exchange_manager_from_exchange_name_and_id( exchange_name, exchange_api.get_exchange_id_from_matrix_id(exchange_name, matrix_id) ) return exchange_api.get_exchange_current_time(exchange_manager) except ImportError: self.logger.error("Strategy requires OctoBot-Trading package installed")
def get_current_exchange_time(self): try: import octobot_trading.api as exchange_api if self.exchange_id is not None: return exchange_api.get_exchange_current_time( exchange_api.get_exchange_manager_from_exchange_name_and_id( self.exchange_name, self.exchange_id ) ) except ImportError: self.logger.error(f"Can't get current exchange time: requires OctoBot-Trading package installed") return None
async def _trigger_evaluation(self, matrix_id, evaluator_name, evaluator_type, eval_note, eval_note_type, exchange_name, cryptocurrency, symbol): # ensure only start evaluations when technical evaluators have been initialized try: TA_by_timeframe = { available_time_frame: matrix.get_evaluations_by_evaluator( matrix_id, exchange_name, evaluators_enums.EvaluatorMatrixTypes.TA.value, cryptocurrency, symbol, available_time_frame.value, allow_missing=False, allowed_values=[commons_constants.START_PENDING_EVAL_NOTE]) for available_time_frame in self.strategy_time_frames } # social evaluators by symbol social_evaluations_by_evaluator = matrix.get_evaluations_by_evaluator( matrix_id, exchange_name, evaluators_enums.EvaluatorMatrixTypes.SOCIAL.value, cryptocurrency, symbol) # social evaluators by crypto currency social_evaluations_by_evaluator.update( matrix.get_evaluations_by_evaluator( matrix_id, exchange_name, evaluators_enums.EvaluatorMatrixTypes.SOCIAL.value, cryptocurrency)) available_rt_time_frames = self.get_available_time_frames( matrix_id, exchange_name, evaluators_enums.EvaluatorMatrixTypes.REAL_TIME.value, cryptocurrency, symbol) RT_evaluations_by_time_frame = { available_time_frame: matrix.get_evaluations_by_evaluator( matrix_id, exchange_name, evaluators_enums.EvaluatorMatrixTypes.REAL_TIME.value, cryptocurrency, symbol, available_time_frame) for available_time_frame in available_rt_time_frames } if self.re_evaluate_TA_when_social_or_realtime_notification \ and any(value for value in TA_by_timeframe.values()) \ and evaluator_type != evaluators_enums.EvaluatorMatrixTypes.TA.value \ and evaluator_type in self.re_evaluation_triggering_eval_types \ and evaluator_name not in self.background_social_evaluators: if evaluators_util.check_valid_eval_note( eval_note, eval_type=eval_note_type, expected_eval_type=evaluators_constants. EVALUATOR_EVAL_DEFAULT_TYPE): # trigger re-evaluation exchange_id = trading_api.get_exchange_id_from_matrix_id( exchange_name, matrix_id) await evaluators_channel.trigger_technical_evaluators_re_evaluation_with_updated_data( matrix_id, evaluator_name, evaluator_type, exchange_name, cryptocurrency, symbol, exchange_id, self.strategy_time_frames) # do not continue this evaluation return counter = 0 total_evaluation = 0 for eval_by_rt in RT_evaluations_by_time_frame.values(): for evaluation in eval_by_rt.values(): eval_value = evaluators_api.get_value(evaluation) if evaluators_util.check_valid_eval_note( eval_value, eval_type=evaluators_api.get_type(evaluation), expected_eval_type=evaluators_constants. EVALUATOR_EVAL_DEFAULT_TYPE): total_evaluation += eval_value counter += 1 for eval_by_ta in TA_by_timeframe.values(): for evaluation in eval_by_ta.values(): eval_value = evaluators_api.get_value(evaluation) if evaluators_util.check_valid_eval_note( eval_value, eval_type=evaluators_api.get_type(evaluation), expected_eval_type=evaluators_constants. EVALUATOR_EVAL_DEFAULT_TYPE): total_evaluation += eval_value counter += 1 if social_evaluations_by_evaluator: exchange_manager = trading_api.get_exchange_manager_from_exchange_name_and_id( exchange_name, trading_api.get_exchange_id_from_matrix_id( exchange_name, self.matrix_id)) current_time = trading_api.get_exchange_current_time( exchange_manager) for evaluation in social_evaluations_by_evaluator.values(): eval_value = evaluators_api.get_value(evaluation) if evaluators_util.check_valid_eval_note( eval_value, eval_type=evaluators_api.get_type(evaluation), expected_eval_type=evaluators_constants. EVALUATOR_EVAL_DEFAULT_TYPE, eval_time=evaluators_api.get_time(evaluation), expiry_delay=self. social_evaluators_default_timeout, current_time=current_time): total_evaluation += eval_value counter += 1 if counter > 0: self.eval_note = total_evaluation / counter await self.strategy_completed(cryptocurrency, symbol) except errors.UnsetTentacleEvaluation as e: if evaluator_type == evaluators_enums.EvaluatorMatrixTypes.TA.value: self.logger.error( f"Missing technical evaluator data for ({e})") # otherwise it's a social or real-time evaluator, it will shortly be taken into account by TA update cycle except Exception as e: self.logger.exception( e, True, f"Error when computing strategy evaluation: {e}")