示例#1
0
 def test_num_peaks(self):
     image = np.zeros((7, 7), dtype=np.uint8)
     image[1, 1] = 10
     image[1, 3] = 11
     image[1, 5] = 12
     image[3, 5] = 8
     image[5, 3] = 7
     self.assertEqual(
         len(peak_local_max(image, min_distance=1, threshold_abs=0)), 5)
     peaks_limited = peak_local_max(image,
                                    min_distance=1,
                                    threshold_abs=0,
                                    num_peaks=2)
     self.assertEqual(len(peaks_limited), 2)
     self.assertIn((1, 3), peaks_limited)
     self.assertIn((1, 5), peaks_limited)
     peaks_limited = peak_local_max(image,
                                    min_distance=1,
                                    threshold_abs=0,
                                    num_peaks=4)
     self.assertEqual(len(peaks_limited), 4)
     self.assertIn((1, 3), peaks_limited)
     self.assertIn((1, 5), peaks_limited)
     self.assertIn((1, 1), peaks_limited)
     self.assertIn((3, 5), peaks_limited)
示例#2
0
    def test_sorted_peaks(self):
        image = np.zeros((5, 5), dtype=np.uint8)
        image[1, 1] = 20
        image[3, 3] = 10
        peaks = peak_local_max(image, min_distance=1)
        self.assertEqual(peaks.tolist(), [[1, 1], [3, 3]])

        image = np.zeros((3, 10))
        image[1, (1, 3, 5, 7)] = (1, 2, 3, 4)
        peaks = peak_local_max(image, min_distance=1)
        self.assertEqual(peaks.tolist(), [[1, 7], [1, 5], [1, 3], [1, 1]])
示例#3
0
    def test_threshold_rel_default(self):
        image = np.ones((5, 5))

        image[2, 2] = 1
        self.assertEqual(len(peak_local_max(image)), 0)

        image[2, 2] = 2
        np.testing.assert_equal(peak_local_max(image), [[2, 2]])

        image[2, 2] = 0
        with self.assertWarnsRegex(RuntimeWarning, "When min_distance < 1"):
            self.assertEqual(len(peak_local_max(image, min_distance=0)),
                             image.size - 1)
示例#4
0
 def test_num_peaks3D(self):
     # Issue 1354: the old code only hold for 2D arrays
     # and this code would die with IndexError
     image = np.zeros((10, 10, 100))
     image[5, 5, ::5] = np.arange(20)
     peaks_limited = peak_local_max(image, min_distance=1, num_peaks=2)
     self.assertEqual(len(peaks_limited), 2)
示例#5
0
 def test_absolute_threshold(self):
     image = np.zeros((5, 5), dtype=np.uint8)
     image[1, 1] = 10
     image[3, 3] = 20
     peaks = peak_local_max(image, min_distance=1, threshold_abs=10)
     self.assertEqual(len(peaks), 1)
     np.testing.assert_array_almost_equal(peaks, [(3, 3)])
示例#6
0
    def test_exclude_border(self):
        for indices in itertools.product(range(5), range(5)):
            with self.subTest(indices=indices):
                image = np.zeros((5, 5))
                image[indices] = 1

                # exclude_border = False, means it will always be found.
                self.assertEqual(
                    len(peak_local_max(image, exclude_border=False)), 1)

                # exclude_border = 0, means it will always be found.
                self.assertEqual(len(peak_local_max(image, exclude_border=0)),
                                 1)

                # exclude_border = True, min_distance=1 means it will be found
                # unless it's on the edge.
                if indices[0] in (0, 4) or indices[1] in (0, 4):
                    expected_peaks = 0
                else:
                    expected_peaks = 1
                self.assertEqual(
                    len(
                        peak_local_max(image,
                                       min_distance=1,
                                       exclude_border=True)),
                    expected_peaks,
                )

                # exclude_border = (1, 0) means it will be found unless it's on
                # the edge of the first dimension.
                if indices[0] in (0, 4):
                    expected_peaks = 0
                else:
                    expected_peaks = 1
                self.assertEqual(
                    len(peak_local_max(image, exclude_border=(1, 0))),
                    expected_peaks)

                # exclude_border = (0, 1) means it will be found unless it's on
                # the edge of the second dimension.
                if indices[1] in (0, 4):
                    expected_peaks = 0
                else:
                    expected_peaks = 1
                self.assertEqual(
                    len(peak_local_max(image, exclude_border=(0, 1))),
                    expected_peaks)
示例#7
0
文件: spot.py 项目: Mahmood-B/odemis
def find_spot_positions(
    image: numpy.ndarray,
    sigma: float,
    threshold_abs: Optional[float] = None,
    threshold_rel: Optional[float] = None,
    num_spots: Optional[int] = None,
) -> numpy.ndarray:
    """
    Find the center coordinates of spots with the highest intensity in an
    image.

    Parameters
    ----------
    image : ndarray
        The input image.
    sigma : float
        Expected size of the spots. Assuming the spots are Gaussian shaped,
        this is the standard deviation.
    threshold_abs : float, optional
        Minimum intensity of peaks. By default, the absolute threshold is
        the minimum intensity of the image.
    threshold_rel : float, optional
        If provided, apply a threshold on the minimum intensity of peaks,
        calculated as `max(image) * threshold_rel`.
    num_spots : int, optional
        Maximum number of spots. When the number of spots exceeds `num_spots`,
        return `num_spots` peaks based on highest spot intensity.

    Returns
    -------
    refined_position : ndarray
        A 2-dimensional array of shape `(N, 2)` containing the coordinates of
        the maxima.

    """
    size = int(round(3 * sigma))
    min_distance = 2 * size
    filtered = bandpass_filter(image, sigma, min_distance)
    coordinates = peak_local_max(
        filtered,
        min_distance=min_distance,
        threshold_abs=threshold_abs,
        threshold_rel=threshold_rel,
        num_peaks=num_spots,
        p_norm=2,
    )

    # Improve coordinate estimate using radial symmetry center.
    refined_coordinates = numpy.empty_like(coordinates, dtype=float)
    for idx, ji in enumerate(coordinates):
        subimg = _get_subimage(filtered, ji, size)
        rsc = radial_symmetry_center(subimg, smoothing=False)
        delta = numpy.subtract(rsc, size)
        refined_coordinates[idx] = ji + delta

    return refined_coordinates
示例#8
0
 def test_empty_non2d_indices(self):
     image = np.zeros((10, 10, 10))
     result = peak_local_max(
         image,
         footprint=np.ones((3, 3, 3), bool),
         min_distance=1,
         threshold_rel=0,
         exclude_border=False,
     )
     self.assertEqual(result.shape, (0, image.ndim))
示例#9
0
 def test_noisy_peaks(self):
     peak_locations = [(7, 7), (7, 13), (13, 7), (13, 13)]
     # image with noise of amplitude 0.8 and peaks of amplitude 1
     image = 0.8 * np.random.rand(20, 20)
     for r, c in peak_locations:
         image[r, c] = 1
     peaks_detected = peak_local_max(image, min_distance=5)
     self.assertEqual(len(peaks_detected), len(peak_locations))
     for loc in peaks_detected:
         self.assertIn(tuple(loc), peak_locations)
示例#10
0
 def test_4D(self):
     image = np.zeros((30, 30, 30, 30))
     image[15, 15, 15, 15] = 1
     image[5, 5, 5, 5] = 1
     np.testing.assert_equal(
         peak_local_max(image, min_distance=10, threshold_rel=0),
         [[15, 15, 15, 15]])
     np.testing.assert_equal(
         peak_local_max(image, min_distance=6, threshold_rel=0),
         [[15, 15, 15, 15]])
     self.assertEqual(
         sorted(
             peak_local_max(image,
                            min_distance=10,
                            threshold_rel=0,
                            exclude_border=False).tolist()),
         [[5, 5, 5, 5], [15, 15, 15, 15]],
     )
     self.assertEqual(
         sorted(
             peak_local_max(image, min_distance=5,
                            threshold_rel=0).tolist()),
         [[5, 5, 5, 5], [15, 15, 15, 15]],
     )
示例#11
0
 def test_flat_peak(self):
     image = np.zeros((5, 5), dtype=np.uint8)
     image[1:3, 1:3] = 10
     peaks = peak_local_max(image, min_distance=1)
     self.assertEqual(len(peaks), 4)
示例#12
0
 def test_constant_image(self):
     image = np.full((20, 20), 128, dtype=np.uint8)
     peaks = peak_local_max(image, min_distance=1)
     self.assertEqual(len(peaks), 0)
示例#13
0
 def test_trivial_case(self):
     trivial = np.zeros((25, 25))
     peak_indices = peak_local_max(trivial, min_distance=1)
     self.assertIsInstance(peak_indices, np.ndarray)
     self.assertEqual(peak_indices.size, 0)