示例#1
0
batch_size = 32
max_iter = 50000
encoder = vi.NetConf([256, 256, 256], flatten_inputs=True, name='Encoder')
decoder = vi.NetConf([256, 256, 256], flatten_inputs=True, name='Decoder')
encoded_size = 16
posteriors_info = [
    ('gaussian', 'mvndiag', 'mvntril'),
    (
        D.Sample(D.Normal(loc=0., scale=1.),
                 sample_shape=encoded_size,
                 name='independent'),
        D.MultivariateNormalDiag(loc=tf.zeros(encoded_size),
                                 scale_diag=tf.ones(encoded_size),
                                 name='mvndiag'),
        D.MultivariateNormalTriL(loc=tf.zeros(encoded_size),
                                 scale_tril=bj.FillScaleTriL()(tf.ones(
                                     encoded_size * (encoded_size + 1) // 2)),
                                 name='mvntril'),
        D.MixtureSameFamily(
            components_distribution=D.MultivariateNormalDiag(
                loc=tf.zeros([10, encoded_size]),
                scale_diag=tf.ones([10, encoded_size])),
            mixture_distribution=D.Categorical(logits=tf.fill([10], 1.0 / 10)),
            name='gmm10'),
        D.MixtureSameFamily(components_distribution=D.MultivariateNormalDiag(
            loc=tf.zeros([100, encoded_size]),
            scale_diag=tf.ones([100, encoded_size])),
                            mixture_distribution=D.Categorical(
                                logits=tf.fill([100], 1.0 / 100)),
                            name='gmm100'),
    ),
    ('identity', 'relu', 'softplus', 'softplus1'),
示例#2
0
def _default_prior(event_shape, posterior, prior, posterior_kwargs):
  if not isinstance(event_shape, (Sequence, MutableSequence, tf.TensorShape)):
    raise ValueError("event_shape must be list of integer but given: "
                     f"{event_shape} type: {type(event_shape)}")
  if isinstance(prior, (Distribution, DistributionLambda, Callable)):
    return prior
  elif not isinstance(prior, (string_types, type(None))):
    raise ValueError("prior must be string or instance of "
                     f"Distribution or DistributionLambda, but given: {prior}")
  # no prior given
  layer, dist = parse_distribution(posterior)
  if isinstance(prior, dict):
    kw = dict(prior)
    prior = None
  else:
    kw = {}
  event_size = int(np.prod(event_shape))

  ## helper function
  def _kwargs(**args):
    for k, v in args.items():
      if k not in kw:
        kw[k] = v
    return kw

  ## Normal
  if layer == obl.GaussianLayer:
    prior = obd.Independent(
        obd.Normal(**_kwargs(loc=tf.zeros(shape=event_shape),
                             scale=tf.ones(shape=event_shape))),
        reinterpreted_batch_ndims=1,
    )
  ## Multivariate Normal
  elif issubclass(layer, obl.MultivariateNormalLayer):
    cov = layer._partial_kwargs['covariance']
    if cov == 'diag':  # diagonal covariance
      loc = tf.zeros(shape=event_shape)
      if tf.rank(loc) == 0:
        loc = tf.expand_dims(loc, axis=-1)
      prior = obd.MultivariateNormalDiag(
          **_kwargs(loc=loc, scale_identity_multiplier=1.))
    else:  # low-triangle covariance
      bijector = tfp.bijectors.FillScaleTriL(
          diag_bijector=tfp.bijectors.Identity(), diag_shift=1e-5)
      size = tf.reduce_prod(event_shape)
      loc = tf.zeros(shape=[size])
      scale_tril = bijector.forward(tf.ones(shape=[size * (size + 1) // 2]))
      prior = obd.MultivariateNormalTriL(
          **_kwargs(loc=loc, scale_tril=scale_tril))
  ## Log Normal
  elif layer == obl.LogNormalLayer:
    prior = obd.Independent(
        obd.LogNormal(**_kwargs(loc=tf.zeros(shape=event_shape),
                                scale=tf.ones(shape=event_shape))),
        reinterpreted_batch_ndims=1,
    )
  ## mixture
  elif issubclass(layer, obl.MixtureGaussianLayer):
    if hasattr(layer, '_partial_kwargs'):
      cov = layer._partial_kwargs['covariance']
    else:
      cov = 'none'
    n_components = int(posterior_kwargs.get('n_components', 2))
    if cov == 'diag':
      scale_shape = [n_components, event_size]
      fn = lambda l, s: obd.MultivariateNormalDiag(loc=l,
                                                   scale_diag=tf.nn.softplus(s))
    elif cov == 'none':
      scale_shape = [n_components, event_size]
      fn = lambda l, s: obd.Independent(
          obd.Normal(loc=l, scale=tf.math.softplus(s)),
          reinterpreted_batch_ndims=1,
      )
    elif cov in ('full', 'tril'):
      scale_shape = [n_components, event_size * (event_size + 1) // 2]
      fn = lambda l, s: obd.MultivariateNormalTriL(
          loc=l,
          scale_tril=tfp.bijectors.FillScaleTriL(diag_shift=1e-5)
          (tf.math.softplus(s)))
    loc = tf.cast(tf.fill([n_components, event_size], 0.), dtype=tf.float32)
    log_scale = tf.cast(tf.fill(scale_shape, np.log(np.expm1(1.))),
                        dtype=tf.float32)
    p = 1. / n_components
    mixture_logits = tf.cast(tf.fill([n_components], np.log(p / (1 - p))),
                             dtype=tf.float32)
    prior = obd.MixtureSameFamily(
        components_distribution=fn(loc, log_scale),
        mixture_distribution=obd.Categorical(logits=mixture_logits))
  ## discrete
  elif dist in (obd.OneHotCategorical, obd.Categorical) or \
    layer == obl.RelaxedOneHotCategoricalLayer:
    p = 1. / event_size
    prior = dist(**_kwargs(logits=[np.log(p / (1 - p))] * event_size),
                 dtype=tf.float32)
  elif dist == obd.Dirichlet:
    prior = dist(**_kwargs(concentration=[1.] * event_size))
  elif dist == obd.Bernoulli:
    prior = obd.Independent(
        obd.Bernoulli(**_kwargs(logits=np.zeros(event_shape)),
                      dtype=tf.float32),
        reinterpreted_batch_ndims=len(event_shape),
    )
  ## other
  return prior
示例#3
0
def _MVNtril(dists, axis, kwargs):
  scale = tf.concat([_with_batch_dim(d.scale.to_dense(), d) for d in dists],
                    axis=axis)
  loc = tf.concat([_with_batch_dim(d.loc, d) for d in dists], axis=axis)
  kwargs.update(dict(loc=loc, scale_tril=scale))
  return obd.MultivariateNormalTriL(**kwargs)
示例#4
0
def _default_prior(event_shape, posterior, prior, posterior_kwargs):
    if isinstance(prior, obd.Distribution):
        return prior
    layer, dist = parse_distribution(posterior)
    if isinstance(prior, dict):
        kw = dict(prior)
        prior = None
    else:
        kw = {}
    event_size = int(np.prod(event_shape))

    ## helper function
    def _kwargs(**args):
        for k, v in args.items():
            if k not in kw:
                kw[k] = v
        return kw

    ## Normal
    if layer == obl.GaussianLayer:
        prior = obd.Independent(
            obd.Normal(**_kwargs(loc=tf.zeros(shape=event_shape),
                                 scale=tf.ones(shape=event_shape))), 1)
    ## Multivariate Normal
    elif issubclass(layer, obl.MultivariateNormalLayer):
        cov = layer._partial_kwargs['covariance']
        if cov == 'diag':  # diagonal covariance
            loc = tf.zeros(shape=event_shape)
            if tf.rank(loc) == 0:
                loc = tf.expand_dims(loc, axis=-1)
            prior = obd.MultivariateNormalDiag(
                **_kwargs(loc=loc, scale_identity_multiplier=1.))
        else:  # low-triangle covariance
            bijector = tfp.bijectors.FillScaleTriL(
                diag_bijector=tfp.bijectors.Identity(), diag_shift=1e-5)
            size = tf.reduce_prod(event_shape)
            loc = tf.zeros(shape=[size])
            scale_tril = bijector.forward(
                tf.ones(shape=[size * (size + 1) // 2]))
            prior = obd.MultivariateNormalTriL(
                **_kwargs(loc=loc, scale_tril=scale_tril))
    ## Log Normal
    elif layer == obl.LogNormalLayer:
        prior = obd.Independent(
            obd.LogNormal(**_kwargs(loc=tf.zeros(shape=event_shape),
                                    scale=tf.ones(shape=event_shape))), 1)
    ## mixture
    elif issubclass(layer, obl.MixtureGaussianLayer):
        if hasattr(layer, '_partial_kwargs'):
            cov = layer._partial_kwargs['covariance']
        else:
            cov = 'none'
        n_components = int(posterior_kwargs.get('n_components', 2))
        if cov == 'diag':
            scale_shape = [n_components, event_size]
            fn = lambda l, s: obd.MultivariateNormalDiag(
                loc=l, scale_diag=tf.nn.softplus(s))
        elif cov == 'none':
            scale_shape = [n_components, event_size]
            fn = lambda l, s: obd.Independent(
                obd.Normal(loc=l, scale=tf.math.softplus(s)), 1)
        elif cov in ('full', 'tril'):
            scale_shape = [n_components, event_size * (event_size + 1) // 2]
            fn = lambda l, s: obd.MultivariateNormalTriL(
                loc=l,
                scale_tril=tfp.bijectors.FillScaleTriL(diag_shift=1e-5)
                (tf.math.softplus(s)))
        loc = tf.cast(tf.fill([n_components, event_size], 0.),
                      dtype=tf.float32)
        log_scale = tf.cast(tf.fill(scale_shape, np.log(np.expm1(1.))),
                            dtype=tf.float32)
        mixture_logits = tf.cast(tf.fill([n_components], 1.), dtype=tf.float32)
        prior = obd.MixtureSameFamily(
            components_distribution=fn(loc, log_scale),
            mixture_distribution=obd.Categorical(logits=mixture_logits))
    ## discrete
    elif dist in (obd.OneHotCategorical, obd.Categorical) or \
      layer == obl.RelaxedOneHotCategoricalLayer:
        prior = dist(**_kwargs(logits=np.log([1. / event_size] * event_size),
                               dtype=tf.float32))
    elif dist == obd.Dirichlet:
        prior = dist(**_kwargs(concentration=[1.] * event_size))
    elif dist == obd.Bernoulli:
        prior = obd.Independent(
            obd.Bernoulli(**_kwargs(logits=np.full(event_shape, np.log(0.5)),
                                    dtype=tf.float32)), len(event_shape))
    ## other
    return prior