示例#1
0
文件: partition.py 项目: hmpku/odl
def nonuniform_partition(*coord_vecs, **kwargs):
    """Return a partition with un-equally sized cells.

    Parameters
    ----------
    coord_vecs1, ... coord_vecsN : `array-like`
        Arrays of coordinates of the mid-points of the partition cells.
    min_pt, max_pt : float or sequence of floats, optional
        Vectors defining the lower/upper limits of the intervals in an
        `IntervalProd` (a rectangular box). ``None`` entries mean
        "compute the value".
    nodes_on_bdry : bool or sequence, optional
        If a sequence is provided, it determines per axis whether to
        place the last grid point on the boundary (``True``) or shift it
        by half a cell size into the interior (``False``). In each axis,
        an entry may consist in a single bool or a 2-tuple of
        bool. In the latter case, the first tuple entry decides for
        the left, the second for the right boundary. The length of the
        sequence must be ``array.ndim``.

        A single boolean is interpreted as a global choice for all
        boundaries.

        Cannot be given with both min_pt and max_pt since they determine the
        same thing.

        Default: ``False``

    See Also
    --------
    uniform_partition : uniformly spaced points
    uniform_partition_fromintv : partition an existing set
    uniform_partition_fromgrid : use an existing grid as basis

    Examples
    --------
    With uniformly spaced points the result is the same as a
    uniform partition:

    >>> odl.nonuniform_partition([0, 1, 2, 3])
    uniform_partition(-0.5, 3.5, 4)
    >>> odl.nonuniform_partition([0, 1, 2, 3], [1, 2])
    uniform_partition([-0.5, 0.5], [3.5, 2.5], (4, 2))

    If the points are not uniformly spaced, a nonuniform partition is
    created. Note that the containing interval is calculated by assuming
    that the points are in the middle of the sub-intervals:

    >>> odl.nonuniform_partition([0, 1, 3])
    nonuniform_partition(
        [0.0, 1.0, 3.0]
    )

    Higher dimensional partitions are created by specifying the gridpoints
    along each dimension:

    >>> odl.nonuniform_partition([0, 1, 3], [1, 2])
    nonuniform_partition(
        [0.0, 1.0, 3.0],
        [1.0, 2.0]
    )

    If the endpoints should be on the boundary, the ``nodes_on_bdry`` parameter
    can be used:

    >>> odl.nonuniform_partition([0, 1, 3], nodes_on_bdry=True)
    nonuniform_partition(
        [0.0, 1.0, 3.0],
        nodes_on_bdry=True
    )

    Users can also manually specify the containing intervals dimensions by
    using the ``min_pt`` and ``max_pt`` arguments:

    >>> odl.nonuniform_partition([0, 1, 3], min_pt=-2, max_pt=3)
    nonuniform_partition(
        [0.0, 1.0, 3.0],
        min_pt=-2.0, max_pt=3.0
    )
    """
    # Get parameters from kwargs
    min_pt = kwargs.pop('min_pt', None)
    max_pt = kwargs.pop('max_pt', None)
    nodes_on_bdry = kwargs.pop('nodes_on_bdry', False)

    # np.size(None) == 1
    sizes = [len(coord_vecs)] + [np.size(p) for p in (min_pt, max_pt)]
    ndim = int(np.max(sizes))

    min_pt = normalized_scalar_param_list(min_pt,
                                          ndim,
                                          param_conv=float,
                                          keep_none=True)
    max_pt = normalized_scalar_param_list(max_pt,
                                          ndim,
                                          param_conv=float,
                                          keep_none=True)
    nodes_on_bdry = normalized_nodes_on_bdry(nodes_on_bdry, ndim)

    # Calculate the missing parameters in min_pt, max_pt
    for i, (xmin, xmax, (bdry_l, bdry_r),
            coords) in enumerate(zip(min_pt, max_pt, nodes_on_bdry,
                                     coord_vecs)):
        # Check input for redundancy
        if xmin is not None and bdry_l:
            raise ValueError('in axis {}: got both `min_pt` and '
                             '`nodes_on_bdry=True`'.format(i))
        if xmax is not None and bdry_r:
            raise ValueError('in axis {}: got both `max_pt` and '
                             '`nodes_on_bdry=True`'.format(i))

        # Compute boundary position if not given by user
        if xmin is None:
            if bdry_l:
                min_pt[i] = coords[0]
            else:
                min_pt[i] = coords[0] - (coords[1] - coords[0]) / 2.0
        if xmax is None:
            if bdry_r:
                max_pt[i] = coords[-1]
            else:
                max_pt[i] = coords[-1] + (coords[-1] - coords[-2]) / 2.0

    interval = IntervalProd(min_pt, max_pt)
    grid = RectGrid(*coord_vecs)
    return RectPartition(interval, grid)
示例#2
0
def nonuniform_partition(*coord_vecs, **kwargs):
    """Return a partition with un-equally sized cells.

    Parameters
    ----------
    coord_vecs1, ... coord_vecsN : `array-like`
        Arrays of coordinates of the mid-points of the partition cells.
    min_pt, max_pt : float or sequence of floats, optional
        Vectors defining the lower/upper limits of the intervals in an
        `IntervalProd` (a rectangular box). ``None`` entries mean
        "compute the value".
    nodes_on_bdry : bool or sequence, optional
        If a sequence is provided, it determines per axis whether to
        place the last grid point on the boundary (``True``) or shift it
        by half a cell size into the interior (``False``). In each axis,
        an entry may consist in a single bool or a 2-tuple of
        bool. In the latter case, the first tuple entry decides for
        the left, the second for the right boundary. The length of the
        sequence must be ``array.ndim``.

        A single boolean is interpreted as a global choice for all
        boundaries.

        Cannot be given with both min_pt and max_pt since they determine the
        same thing.

        Default: ``False``

    See Also
    --------
    uniform_partition : uniformly spaced points
    uniform_partition_fromintv : partition an existing set
    uniform_partition_fromgrid : use an existing grid as basis

    Examples
    --------
    With uniformly spaced points the result is the same as a
    uniform partition:

    >>> odl.nonuniform_partition([0, 1, 2, 3])
    uniform_partition(-0.5, 3.5, 4)
    >>> odl.nonuniform_partition([0, 1, 2, 3], [1, 2])
    uniform_partition([-0.5, 0.5], [3.5, 2.5], (4, 2))

    If the points are not uniformly spaced, a nonuniform partition is
    created. Note that the containing interval is calculated by assuming
    that the points are in the middle of the sub-intervals:

    >>> odl.nonuniform_partition([0, 1, 3])
    nonuniform_partition(
        [0.0, 1.0, 3.0]
    )

    Higher dimensional partitions are created by specifying the gridpoints
    along each dimension:

    >>> odl.nonuniform_partition([0, 1, 3], [1, 2])
    nonuniform_partition(
        [0.0, 1.0, 3.0],
        [1.0, 2.0]
    )

    If the endpoints should be on the boundary, the ``nodes_on_bdry`` parameter
    can be used:

    >>> odl.nonuniform_partition([0, 1, 3], nodes_on_bdry=True)
    nonuniform_partition(
        [0.0, 1.0, 3.0],
        nodes_on_bdry=True
    )

    Users can also manually specify the containing intervals dimensions by
    using the ``min_pt`` and ``max_pt`` arguments:

    >>> odl.nonuniform_partition([0, 1, 3], min_pt=-2, max_pt=3)
    nonuniform_partition(
        [0.0, 1.0, 3.0],
        min_pt=-2.0, max_pt=3.0
    )
    """
    # Get parameters from kwargs
    min_pt = kwargs.pop('min_pt', None)
    max_pt = kwargs.pop('max_pt', None)
    nodes_on_bdry = kwargs.pop('nodes_on_bdry', False)

    # np.size(None) == 1
    sizes = [len(coord_vecs)] + [np.size(p) for p in (min_pt, max_pt)]
    ndim = int(np.max(sizes))

    min_pt = normalized_scalar_param_list(min_pt, ndim, param_conv=float,
                                          keep_none=True)
    max_pt = normalized_scalar_param_list(max_pt, ndim, param_conv=float,
                                          keep_none=True)
    nodes_on_bdry = normalized_nodes_on_bdry(nodes_on_bdry, ndim)

    # Calculate the missing parameters in min_pt, max_pt
    for i, (xmin, xmax, (bdry_l, bdry_r), coords) in enumerate(
            zip(min_pt, max_pt, nodes_on_bdry, coord_vecs)):
        # Check input for redundancy
        if xmin is not None and bdry_l:
            raise ValueError('in axis {}: got both `min_pt` and '
                             '`nodes_on_bdry=True`'.format(i))
        if xmax is not None and bdry_r:
            raise ValueError('in axis {}: got both `max_pt` and '
                             '`nodes_on_bdry=True`'.format(i))

        # Compute boundary position if not given by user
        if xmin is None:
            if bdry_l:
                min_pt[i] = coords[0]
            else:
                min_pt[i] = coords[0] - (coords[1] - coords[0]) / 2.0
        if xmax is None:
            if bdry_r:
                max_pt[i] = coords[-1]
            else:
                max_pt[i] = coords[-1] + (coords[-1] - coords[-2]) / 2.0

    interval = IntervalProd(min_pt, max_pt)
    grid = RectGrid(*coord_vecs)
    return RectPartition(interval, grid)
示例#3
0
文件: partition.py 项目: hmpku/odl
def uniform_partition(min_pt=None,
                      max_pt=None,
                      shape=None,
                      cell_sides=None,
                      nodes_on_bdry=False):
    """Return a partition with equally sized cells.

    Parameters
    ----------
    min_pt, max_pt : float or sequence of float, optional
        Vectors defining the lower/upper limits of the intervals in an
        `IntervalProd` (a rectangular box). ``None`` entries mean
        "compute the value".
    shape : int or sequence of ints, optional
        Number of nodes per axis. ``None`` entries mean
        "compute the value".
    cell_sides : float or sequence of floats, optional
        Side length of the partition cells per axis. ``None`` entries mean
        "compute the value".
    nodes_on_bdry : bool or sequence, optional
        If a sequence is provided, it determines per axis whether to
        place the last grid point on the boundary (``True``) or shift it
        by half a cell size into the interior (``False``). In each axis,
        an entry may consist in a single bool or a 2-tuple of
        bool. In the latter case, the first tuple entry decides for
        the left, the second for the right boundary. The length of the
        sequence must be ``array.ndim``.

        A single boolean is interpreted as a global choice for all
        boundaries.

    Notes
    -----
    In each axis, 3 of the 4 possible parameters ``min_pt``, ``max_pt``,
    ``shape`` and ``cell_sides`` must be given. If all four are
    provided, they are checked for consistency.

    See Also
    --------
    uniform_partition_fromintv : partition an existing set
    uniform_partition_fromgrid : use an existing grid as basis

    Examples
    --------
    Any combination of three of the four parameters can be used for
    creation of a partition:

    >>> part = odl.uniform_partition(min_pt=0, max_pt=2, shape=4)
    >>> part.cell_boundary_vecs
    (array([ 0. ,  0.5,  1. ,  1.5,  2. ]),)
    >>> part = odl.uniform_partition(min_pt=0, shape=4, cell_sides=0.5)
    >>> part.cell_boundary_vecs
    (array([ 0. ,  0.5,  1. ,  1.5,  2. ]),)
    >>> part = odl.uniform_partition(max_pt=2, shape=4, cell_sides=0.5)
    >>> part.cell_boundary_vecs
    (array([ 0. ,  0.5,  1. ,  1.5,  2. ]),)
    >>> part = odl.uniform_partition(min_pt=0, max_pt=2, cell_sides=0.5)
    >>> part.cell_boundary_vecs
    (array([ 0. ,  0.5,  1. ,  1.5,  2. ]),)

    In higher dimensions, the parameters can be given differently in
    each axis. Where ``None`` is given, the value will be computed:

    >>> part = odl.uniform_partition(min_pt=[0, 0], max_pt=[1, 2],
    ...                              shape=[4, 2])
    >>> part.cell_boundary_vecs
    (array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ]), array([ 0.,  1.,  2.]))
    >>> part = odl.uniform_partition(min_pt=[0, 0], max_pt=[1, 2],
    ...                              shape=[None, 2], cell_sides=[0.25, None])
    >>> part.cell_boundary_vecs
    (array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ]), array([ 0.,  1.,  2.]))
    >>> part = odl.uniform_partition(min_pt=[0, None], max_pt=[None, 2],
    ...                              shape=[4, 2], cell_sides=[0.25, 1])
    >>> part.cell_boundary_vecs
    (array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ]), array([ 0.,  1.,  2.]))

    By default, no grid points are placed on the boundary:

    >>> part = odl.uniform_partition(0, 1, 4)
    >>> part.nodes_on_bdry
    False
    >>> part.cell_boundary_vecs
    (array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ]),)
    >>> part.grid.coord_vectors
    (array([ 0.125,  0.375,  0.625,  0.875]),)

    This can be changed with the nodes_on_bdry parameter:

    >>> part = odl.uniform_partition(0, 1, 3, nodes_on_bdry=True)
    >>> part.nodes_on_bdry
    True
    >>> part.cell_boundary_vecs
    (array([ 0.  ,  0.25,  0.75,  1.  ]),)
    >>> part.grid.coord_vectors
    (array([ 0. ,  0.5,  1. ]),)

    We can specify this per axis, too. In this case we choose both
    in the first axis and only the rightmost in the second:

    >>> part = odl.uniform_partition([0, 0], [1, 1], (3, 3),
    ...                              nodes_on_bdry=(True, (False, True)))
    ...
    >>> part.cell_boundary_vecs[0]  # first axis, as above
    array([ 0.  ,  0.25,  0.75,  1.  ])
    >>> part.grid.coord_vectors[0]
    array([ 0. ,  0.5,  1. ])
    >>> part.cell_boundary_vecs[1]  # second, asymmetric axis
    array([ 0. ,  0.4,  0.8,  1. ])
    >>> part.grid.coord_vectors[1]
    array([ 0.2,  0.6,  1. ])
    """
    # Normalize partition parameters

    # np.size(None) == 1, so that would screw it for sizes 0 of the rest
    sizes = [
        np.size(p) for p in (min_pt, max_pt, shape, cell_sides)
        if p is not None
    ]
    ndim = int(np.max(sizes))

    min_pt = normalized_scalar_param_list(min_pt,
                                          ndim,
                                          param_conv=float,
                                          keep_none=True)
    max_pt = normalized_scalar_param_list(max_pt,
                                          ndim,
                                          param_conv=float,
                                          keep_none=True)
    shape = normalized_scalar_param_list(shape,
                                         ndim,
                                         param_conv=safe_int_conv,
                                         keep_none=True)
    cell_sides = normalized_scalar_param_list(cell_sides,
                                              ndim,
                                              param_conv=float,
                                              keep_none=True)

    nodes_on_bdry = normalized_nodes_on_bdry(nodes_on_bdry, ndim)

    # Calculate the missing parameters in min_pt, max_pt, shape
    for i, (xmin, xmax, n, dx, on_bdry) in enumerate(
            zip(min_pt, max_pt, shape, cell_sides, nodes_on_bdry)):
        num_params = sum(p is not None for p in (xmin, xmax, n, dx))
        if num_params < 3:
            raise ValueError('in axis {}: expected at least 3 of the '
                             'parameters `min_pt`, `max_pt`, `shape`, '
                             '`cell_sides`, got {}'
                             ''.format(i, num_params))

        # Unpack the tuple if possible, else use bool globally for this axis
        try:
            bdry_l, bdry_r = on_bdry
        except TypeError:
            bdry_l = bdry_r = on_bdry

        # For each node on the boundary, we subtract 1/2 from the number of
        # full cells between min_pt and max_pt.
        if xmin is None:
            min_pt[i] = xmax - (n - sum([bdry_l, bdry_r]) / 2.0) * dx
        elif xmax is None:
            max_pt[i] = xmin + (n - sum([bdry_l, bdry_r]) / 2.0) * dx
        elif n is None:
            # Here we add to n since (e-b)/s gives the reduced number of cells.
            n_calc = (xmax - xmin) / dx + sum([bdry_l, bdry_r]) / 2.0
            n_round = int(round(n_calc))
            if abs(n_calc - n_round) > 1e-5:
                raise ValueError('in axis {}: calculated number of nodes '
                                 '{} = ({} - {}) / {} too far from integer'
                                 ''.format(i, n_calc, xmax, xmin, dx))
            shape[i] = n_round
        elif dx is None:
            pass
        else:
            xmax_calc = xmin + (n - sum([bdry_l, bdry_r]) / 2.0) * dx
            if not np.isclose(xmax, xmax_calc):
                raise ValueError('in axis {}: calculated endpoint '
                                 '{} = {} + {} * {} too far from given '
                                 'endpoint {}.'
                                 ''.format(i, xmax_calc, xmin, n, dx, xmax))

    return uniform_partition_fromintv(IntervalProd(min_pt, max_pt), shape,
                                      nodes_on_bdry)
示例#4
0
def uniform_partition(min_pt=None, max_pt=None, shape=None, cell_sides=None,
                      nodes_on_bdry=False):
    """Return a partition with equally sized cells.

    Parameters
    ----------
    min_pt, max_pt : float or sequence of float, optional
        Vectors defining the lower/upper limits of the intervals in an
        `IntervalProd` (a rectangular box). ``None`` entries mean
        "compute the value".
    shape : int or sequence of ints, optional
        Number of nodes per axis. ``None`` entries mean
        "compute the value".
    cell_sides : float or sequence of floats, optional
        Side length of the partition cells per axis. ``None`` entries mean
        "compute the value".
    nodes_on_bdry : bool or sequence, optional
        If a sequence is provided, it determines per axis whether to
        place the last grid point on the boundary (``True``) or shift it
        by half a cell size into the interior (``False``). In each axis,
        an entry may consist in a single bool or a 2-tuple of
        bool. In the latter case, the first tuple entry decides for
        the left, the second for the right boundary. The length of the
        sequence must be ``array.ndim``.

        A single boolean is interpreted as a global choice for all
        boundaries.

    Notes
    -----
    In each axis, 3 of the 4 possible parameters ``min_pt``, ``max_pt``,
    ``shape`` and ``cell_sides`` must be given. If all four are
    provided, they are checked for consistency.

    See Also
    --------
    uniform_partition_fromintv : partition an existing set
    uniform_partition_fromgrid : use an existing grid as basis

    Examples
    --------
    Any combination of three of the four parameters can be used for
    creation of a partition:

    >>> part = odl.uniform_partition(min_pt=0, max_pt=2, shape=4)
    >>> part.cell_boundary_vecs
    (array([ 0. ,  0.5,  1. ,  1.5,  2. ]),)
    >>> part = odl.uniform_partition(min_pt=0, shape=4, cell_sides=0.5)
    >>> part.cell_boundary_vecs
    (array([ 0. ,  0.5,  1. ,  1.5,  2. ]),)
    >>> part = odl.uniform_partition(max_pt=2, shape=4, cell_sides=0.5)
    >>> part.cell_boundary_vecs
    (array([ 0. ,  0.5,  1. ,  1.5,  2. ]),)
    >>> part = odl.uniform_partition(min_pt=0, max_pt=2, cell_sides=0.5)
    >>> part.cell_boundary_vecs
    (array([ 0. ,  0.5,  1. ,  1.5,  2. ]),)

    In higher dimensions, the parameters can be given differently in
    each axis. Where ``None`` is given, the value will be computed:

    >>> part = odl.uniform_partition(min_pt=[0, 0], max_pt=[1, 2],
    ...                              shape=[4, 2])
    >>> part.cell_boundary_vecs
    (array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ]), array([ 0.,  1.,  2.]))
    >>> part = odl.uniform_partition(min_pt=[0, 0], max_pt=[1, 2],
    ...                              shape=[None, 2], cell_sides=[0.25, None])
    >>> part.cell_boundary_vecs
    (array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ]), array([ 0.,  1.,  2.]))
    >>> part = odl.uniform_partition(min_pt=[0, None], max_pt=[None, 2],
    ...                              shape=[4, 2], cell_sides=[0.25, 1])
    >>> part.cell_boundary_vecs
    (array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ]), array([ 0.,  1.,  2.]))

    By default, no grid points are placed on the boundary:

    >>> part = odl.uniform_partition(0, 1, 4)
    >>> part.nodes_on_bdry
    False
    >>> part.cell_boundary_vecs
    (array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ]),)
    >>> part.grid.coord_vectors
    (array([ 0.125,  0.375,  0.625,  0.875]),)

    This can be changed with the nodes_on_bdry parameter:

    >>> part = odl.uniform_partition(0, 1, 3, nodes_on_bdry=True)
    >>> part.nodes_on_bdry
    True
    >>> part.cell_boundary_vecs
    (array([ 0.  ,  0.25,  0.75,  1.  ]),)
    >>> part.grid.coord_vectors
    (array([ 0. ,  0.5,  1. ]),)

    We can specify this per axis, too. In this case we choose both
    in the first axis and only the rightmost in the second:

    >>> part = odl.uniform_partition([0, 0], [1, 1], (3, 3),
    ...                              nodes_on_bdry=(True, (False, True)))
    ...
    >>> part.cell_boundary_vecs[0]  # first axis, as above
    array([ 0.  ,  0.25,  0.75,  1.  ])
    >>> part.grid.coord_vectors[0]
    array([ 0. ,  0.5,  1. ])
    >>> part.cell_boundary_vecs[1]  # second, asymmetric axis
    array([ 0. ,  0.4,  0.8,  1. ])
    >>> part.grid.coord_vectors[1]
    array([ 0.2,  0.6,  1. ])
    """
    # Normalize partition parameters

    # np.size(None) == 1
    sizes = [np.size(p) for p in (min_pt, max_pt, shape, cell_sides)]
    ndim = int(np.max(sizes))

    min_pt = normalized_scalar_param_list(min_pt, ndim, param_conv=float,
                                          keep_none=True)
    max_pt = normalized_scalar_param_list(max_pt, ndim, param_conv=float,
                                          keep_none=True)
    shape = normalized_scalar_param_list(shape, ndim, param_conv=safe_int_conv,
                                         keep_none=True)
    cell_sides = normalized_scalar_param_list(cell_sides, ndim,
                                              param_conv=float, keep_none=True)

    nodes_on_bdry = normalized_nodes_on_bdry(nodes_on_bdry, ndim)

    # Calculate the missing parameters in min_pt, max_pt, shape
    for i, (xmin, xmax, n, dx, on_bdry) in enumerate(
            zip(min_pt, max_pt, shape, cell_sides, nodes_on_bdry)):
        num_params = sum(p is not None for p in (xmin, xmax, n, dx))
        if num_params < 3:
            raise ValueError('in axis {}: expected at least 3 of the '
                             'parameters `min_pt`, `max_pt`, `shape`, '
                             '`cell_sides`, got {}'
                             ''.format(i, num_params))

        # Unpack the tuple if possible, else use bool globally for this axis
        try:
            bdry_l, bdry_r = on_bdry
        except TypeError:
            bdry_l = bdry_r = on_bdry

        # For each node on the boundary, we subtract 1/2 from the number of
        # full cells between min_pt and max_pt.
        if xmin is None:
            min_pt[i] = xmax - (n - sum([bdry_l, bdry_r]) / 2.0) * dx
        elif xmax is None:
            max_pt[i] = xmin + (n - sum([bdry_l, bdry_r]) / 2.0) * dx
        elif n is None:
            # Here we add to n since (e-b)/s gives the reduced number of cells.
            n_calc = (xmax - xmin) / dx + sum([bdry_l, bdry_r]) / 2.0
            n_round = int(round(n_calc))
            if abs(n_calc - n_round) > 1e-5:
                raise ValueError('in axis {}: calculated number of nodes '
                                 '{} = ({} - {}) / {} too far from integer'
                                 ''.format(i, n_calc, xmax, xmin, dx))
            shape[i] = n_round
        elif dx is None:
            pass
        else:
            xmax_calc = xmin + (n - sum([bdry_l, bdry_r]) / 2.0) * dx
            if not np.isclose(xmax, xmax_calc):
                raise ValueError('in axis {}: calculated endpoint '
                                 '{} = {} + {} * {} too far from given '
                                 'endpoint {}.'
                                 ''.format(i, xmax_calc, xmin, n, dx, xmax))

    return uniform_partition_fromintv(
        IntervalProd(min_pt, max_pt), shape, nodes_on_bdry)