def test_calculate_capacities(): params = { 'volume': 1000, # m3 'temp_h': 100, # deg C 'temp_c': 50, # deg C } nominal_storage_capacity = calculate_capacities(**params) assert nominal_storage_capacity == 56.62804059111111
def build_solph_components(self): """ """ self.inflow_conversion_factor = sequence(self.efficiency) self.outflow_conversion_factor = sequence(self.efficiency) self.loss_rate = sequence(self.loss_rate) self.fixed_losses_relative = sequence(self.fixed_losses_relative) self.fixed_losses_absolute = sequence(self.fixed_losses_absolute) # make it investment but don't set costs (set below for flow (power)) self.investment = self._investment() if self.investment: self.invest_relation_input_output = 1 for attr in ["invest_relation_input_output"]: if getattr(self, attr) is None: raise AttributeError( ("You need to set attr " "`{}` " "for component {}").format(attr, self.label)) # set capacity costs at one of the flows fi = Flow(investment=Investment( ep_costs=self.capacity_cost, maximum=self.capacity_potential, existing=self.capacity, ), **self.input_parameters) # set investment, but no costs (as relation input / output = 1) fo = Flow(investment=Investment(), variable_costs=self.marginal_cost, **self.output_parameters) # required for correct grouping in oemof.solph.components self._invest_group = True else: self.volume = calculate_storage_dimensions(self.height, self.diameter)[0] self.nominal_storage_capacity = calculate_capacities( self.volume, self.temp_h, self.temp_c, **{ key: value for key, value in self.water_properties.items() if value is not None }) fi = Flow(nominal_value=self._nominal_value(), **self.input_parameters) fo = Flow(nominal_value=self._nominal_value(), variable_costs=self.marginal_cost, **self.output_parameters) self.inputs.update({self.bus: fi}) self.outputs.update({self.bus: fo}) self._set_flows()
def calc_strat_tes_param( weather, temperature_col="temp_air", user_inputs_pvcompare_directory=None, user_inputs_mvs_directory=None, ): """ This function does the precalculations of the stratified thermal storage. It calculates the following parameters: 1. nominal_storage_capacity 2. loss_rate 3. fixed_losses_relative 4. fixed_losses_absolute from the storage's input data provided in `stratified_thermal_storage.csv` and using functions implemented in oemof.thermal (github.com/oemof/oemof-thermal). Parameters ---------- weather : :pandas:`pandas.DataFrame<frame>` Contains weather data time series. Required: ambient temperature in column `temperature_col`. temperature_col : str Name of column in `weather` containing ambient temperature. Default: "temp_air". user_inputs_pvcompare_directory: str or None Directory of the user inputs. If None, `constants.DEFAULT_USER_INPUTS_PVCOMPARE_DIRECTORY` is used as user_inputs_pvcompare_directory. Default: None. user_inputs_mvs_directory: str or None Path to input directory containing files that describe the energy system and that are an input to MVS. Default: DEFAULT_MVS_OUTPUT_DIRECTORY (see :func:`~pvcompare.constants`. Returns ------- nominal_storage_capacity : numeric Maximum amount of stored thermal energy [MWh] loss_rate : numeric (sequence or scalar) The relative loss of the storage capacity between two consecutive timesteps [-] fixed_losses_relative : numeric (sequence or scalar) Losses independent of state of charge between two consecutive timesteps relative to nominal storage capacity [-] fixed_losses_absolute : numeric (sequence or scalar) Losses independent of state of charge and independent of nominal storage capacity between two consecutive timesteps [MWh] """ # ********************************************************************************************* # Set paths - Read and prepare data # ********************************************************************************************* if user_inputs_pvcompare_directory is None: input_directory = constants.DEFAULT_USER_INPUTS_PVCOMPARE_DIRECTORY if user_inputs_mvs_directory == None: user_inputs_mvs_directory = constants.DEFAULT_USER_INPUTS_MVS_DIRECTORY input_data_filename = os.path.join(user_inputs_pvcompare_directory, "stratified_thermal_storage.csv") input_data = pd.read_csv(input_data_filename, header=0, index_col=0)["var_value"] # Prepare ambient temperature for precalculations ambient_temperature = weather[temperature_col] # ********************************************************************************************* # Precalculations # ********************************************************************************************* u_value = strat_tes.calculate_storage_u_value( input_data["s_iso"], input_data["lamb_iso"], input_data["alpha_inside"], input_data["alpha_outside"], ) volume, surface = strat_tes.calculate_storage_dimensions( input_data["height"], input_data["diameter"]) nominal_storage_capacity = (strat_tes.calculate_capacities( volume, input_data["temp_h"], input_data["temp_c"]) * 1000) try: int(float(nominal_storage_capacity)) except ValueError: if math.isnan(nominal_storage_capacity) is True: nominal_storage_capacity = 0 ( loss_rate, fixed_losses_relative, fixed_losses_absolute, ) = strat_tes.calculate_losses( u_value, input_data["diameter"], input_data["temp_h"], # TODO: In future heat pump temp here input_data["temp_c"], # TODO: In future relation to temp_h here ambient_temperature, ) return ( nominal_storage_capacity, loss_rate, fixed_losses_relative, fixed_losses_absolute, )
data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data', 'stratified_thermal_storage.csv') # Read input data input_data = pd.read_csv(data_path, index_col=0, header=0)['var_value'] # Precalculation u_value = calculate_storage_u_value(input_data['s_iso'], input_data['lamb_iso'], input_data['alpha_inside'], input_data['alpha_outside']) volume, surface = calculate_storage_dimensions(input_data['height'], input_data['diameter']) nominal_storage_capacity = calculate_capacities(volume, input_data['temp_h'], input_data['temp_c']) loss_rate, fixed_losses_relative, fixed_losses_absolute = calculate_losses( u_value, input_data['diameter'], input_data['temp_h'], input_data['temp_c'], input_data['temp_env']) maximum_heat_flow_charging = 2 maximum_heat_flow_discharging = 2 def print_parameters(): parameter = { 'U-value [W/(m2*K)]': u_value, 'Volume [m3]': volume, 'Surface [m2]': surface, 'Nominal storage capacity [MWh]': nominal_storage_capacity,
data_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'stratified_thermal_storage.csv') input_data = pd.read_csv(data_path, index_col=0, header=0)['var_value'] u_value = calculate_storage_u_value(input_data['s_iso'], input_data['lamb_iso'], input_data['alpha_inside'], input_data['alpha_outside']) volume, surface = calculate_storage_dimensions(input_data['height'], input_data['diameter']) nominal_storage_capacity, max_storage_level, min_storage_level = calculate_capacities( volume, input_data['temp_h'], input_data['temp_c'], input_data['nonusable_storage_volume'], input_data['heat_capacity'], input_data['density']) loss_rate, fixed_losses_relative, fixed_losses_absolute = calculate_losses( u_value, input_data['diameter'], input_data['temp_h'], input_data['temp_c'], input_data['temp_env']) maximum_heat_flow_charging = 2 maximum_heat_flow_discharging = 2 def print_results(): parameter = { 'U-value [W/(m2*K)]': u_value, 'Volume [m3]': volume, 'Surface [m2]': surface,