def test_001(self): fft_length = 260 carriers = 100 shift = 20 # select maximum estimation range estim_range = (fft_length - carriers) / 2 l = estim_range + shift r = estim_range - shift # create preambles pn1 = pn_preamble(carriers) pn2 = pn_preamble(carriers) diff_pn = concatenate( [[conjugate(math.sqrt(2) * pn2[2 * i] / pn1[2 * i]), 0.0j] for i in range(carriers / 2)]) pn1_sym = extend_symbol(pn1, l, r) pn2_sym = extend_symbol(pn2, l, r) # block under tests cfo_estimator = ofdm.schmidl_cfo_estimator(fft_length, carriers, estim_range, diff_pn) # source, conversion, sink src_1 = gr.vector_source_c(pn1_sym) src_2 = gr.vector_source_c(pn2_sym) s2v_1 = gr.stream_to_vector(gr.sizeof_gr_complex, fft_length) s2v_2 = gr.stream_to_vector(gr.sizeof_gr_complex, fft_length) v2s = gr.vector_to_stream(gr.sizeof_float, 2 * estim_range + 1) dst = gr.vector_sink_f() self.fg.connect(src_1, s2v_1, (cfo_estimator, 0)) self.fg.connect(src_2, s2v_2, (cfo_estimator, 1)) self.fg.connect(cfo_estimator, v2s, dst) # file output filesink = gr.file_sink(gr.sizeof_float, "test_cfo.float") vec_equ = vector_equalizer(2 * estim_range + 1) self.fg.connect( v2s, gr.float_to_complex(), gr.stream_to_vector(gr.sizeof_gr_complex, 2 * estim_range + 1), vec_equ, gr.vector_to_stream(gr.sizeof_gr_complex, 2 * estim_range + 1), gr.complex_to_float(), filesink) runtime = self.fg runtime.run()
def test_001(self): fft_length = 260 carriers = 100 shift = 20 # select maximum estimation range estim_range = (fft_length-carriers)/2 l = estim_range+shift r = estim_range-shift # create preambles pn1 = pn_preamble(carriers) pn2 = pn_preamble(carriers) diff_pn = concatenate([[conjugate(math.sqrt(2)*pn2[2*i]/pn1[2*i]),0.0j] for i in range(carriers/2)]) pn1_sym = extend_symbol(pn1,l,r) pn2_sym = extend_symbol(pn2,l,r) # block under tests cfo_estimator = ofdm.schmidl_cfo_estimator(fft_length,carriers,estim_range,diff_pn) # source, conversion, sink src_1 = gr.vector_source_c(pn1_sym) src_2 = gr.vector_source_c(pn2_sym) s2v_1 = gr.stream_to_vector(gr.sizeof_gr_complex,fft_length) s2v_2 = gr.stream_to_vector(gr.sizeof_gr_complex,fft_length) v2s = gr.vector_to_stream(gr.sizeof_float,2*estim_range+1) dst = gr.vector_sink_f() self.fg.connect(src_1, s2v_1, (cfo_estimator,0)) self.fg.connect(src_2, s2v_2, (cfo_estimator,1)) self.fg.connect(cfo_estimator,v2s,dst) # file output filesink = gr.file_sink(gr.sizeof_float,"test_cfo.float") vec_equ = vector_equalizer(2*estim_range+1) self.fg.connect(v2s,gr.float_to_complex(), gr.stream_to_vector(gr.sizeof_gr_complex,2*estim_range+1), vec_equ,gr.vector_to_stream(gr.sizeof_gr_complex,2*estim_range+1), gr.complex_to_float(),filesink) runtime=self.fg runtime.run()
def __init__(self, fft_length, block_length, block_header, range, options): gr.hier_block2.__init__(self, "integer_fo_estimator", gr.io_signature3(3,3,gr.sizeof_gr_complex,gr.sizeof_float,gr.sizeof_char), gr.io_signature2(3,3,gr.sizeof_float,gr.sizeof_char)) raise NotImplementedError,"Obsolete class" self._range = range # threshold after integer part frequency offset estimation # if peak value below threshold, assume false triggering self._thr_lo = 0.4 #0.19 # empirically found threshold. see ioe_metric.float self._thr_hi = 0.4 #0.2 # stuff to be removed after bugfix for hierblock2s self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.time_sync = gr.kludge_copy(gr.sizeof_char) self.epsilon = (self,1) self.connect((self,0),self.input) self.connect((self,2),self.time_sync) delay(gr.sizeof_char, block_header.schmidl_fine_sync[0]*block_length) # sample ofdm symbol (preamble 1 and 2) sampler_symbol1 = vector_sampler(gr.sizeof_gr_complex,fft_length) sampler_symbol2 = vector_sampler(gr.sizeof_gr_complex,fft_length) time_delay1 = delay(gr.sizeof_char,block_length*block_header.schmidl_fine_sync[1]) self.connect(self.input, (sampler_symbol1,0)) self.connect(self.input, (sampler_symbol2,0)) if block_header.schmidl_fine_sync[0] > 0: time_delay0 = delay(gr.sizeof_char,block_length*block_header.schmidl_fine_sync[0]) self.connect(self.time_sync, time_delay0, (sampler_symbol1,1)) else: self.connect(self.time_sync, (sampler_symbol1,1)) self.connect(self.time_sync, time_delay1, (sampler_symbol2,1)) # negative fractional frequency offset estimate epsilon = gr.multiply_const_ff(-1.0) self.connect(self.epsilon, epsilon) # compensate for fractional frequency offset on per symbol base # freq_shift: vector length, modulator sensitivity # freq_shift third input: reset phase accumulator # symbol/preamble 1 freq_shift_sym1 = frequency_shift_vcc(fft_length, 1.0/fft_length) self.connect(sampler_symbol1, (freq_shift_sym1,0)) self.connect(epsilon, (freq_shift_sym1,1)) self.connect(gr.vector_source_b([1], True), (freq_shift_sym1,2)) # symbol/preamble 2 freq_shift_sym2 = frequency_shift_vcc(fft_length, 1.0/fft_length) self.connect(sampler_symbol2, (freq_shift_sym2,0)) self.connect(epsilon, (freq_shift_sym2,1)) self.connect(gr.vector_source_b([1], True), (freq_shift_sym2,2)) # fourier transfrom on both preambles fft_sym1 = gr.fft_vcc(fft_length, True, [], True) # Forward + Blockshift fft_sym2 = gr.fft_vcc(fft_length, True, [], True) # Forward + Blockshift # calculate schmidl's metric for estimation of freq. offset's integer part assert(hasattr(block_header, "schmidl_fine_sync")) pre1 = block_header.pilotsym_fd[block_header.schmidl_fine_sync[0]] pre2 = block_header.pilotsym_fd[block_header.schmidl_fine_sync[1]] diff_pn = concatenate([[conjugate(math.sqrt(2)*pre2[2*i]/pre1[2*i]),0.0j] for i in arange(len(pre1)/2)]) cfo_estimator = schmidl_cfo_estimator(fft_length, len(pre1), self._range, diff_pn) self.connect(freq_shift_sym1, fft_sym1, (cfo_estimator,0)) # preamble 1 self.connect(freq_shift_sym2, fft_sym2, (cfo_estimator,1)) # preamble 2 # search for maximum and its argument in interval [-range .. +range] #arg_max = arg_max_vff(2*self._range + 1) arg_max_s = gr.argmax_fs(2*self._range+1) arg_max = gr.short_to_float() ifo_max = gr.max_ff(2*self._range + 1) # vlen ifo_estimate = gr.add_const_ff(-self._range) self.connect(cfo_estimator, arg_max_s, arg_max, ifo_estimate) self.connect(cfo_estimator, ifo_max) self.connect((arg_max_s,1),gr.null_sink(gr.sizeof_short)) # threshold maximal value ifo_threshold = gr.threshold_ff(self._thr_lo, self._thr_hi, 0.0) ifo_thr_f2b = gr.float_to_char() self.connect(ifo_max, ifo_threshold, ifo_thr_f2b) # gating the streams ifo_estimate (integer part) and epsilon (frac. part) # if the metric's peak value was above the chosen threshold, assume to have # found a new burst. peak value below threshold results in blocking the # streams self.gate = gate_ff() self.connect(ifo_thr_f2b, (self.gate,0)) # threshold stream self.connect(ifo_estimate, (self.gate,1)) self.connect(epsilon, (self.gate,2)) # peak filtering # resynchronize and suppress peaks that didn't match a preamble filtered_time_sync = peak_resync_bb(True) # replace self.connect(self.time_sync, (filtered_time_sync,0)) self.connect(ifo_thr_f2b, (filtered_time_sync,1)) # find complete estimation for frequency offset # add together fractional and integer part freq_offset = gr.add_ff() self.connect((self.gate,1), gr.multiply_const_ff(-1.0), (freq_offset,0)) # integer offset self.connect((self.gate,2), (freq_offset,1)) # frac offset # output connections self.connect(freq_offset, (self,0)) self.connect(filtered_time_sync, (self,1)) self.connect((self.gate,0), (self,2)) # used for frame trigger ######################################### # debugging if options.log: self.epsilon2_sink = gr.vector_sink_f() self.connect(epsilon, self.epsilon2_sink) self.connect(cfo_estimator, gr.file_sink(gr.sizeof_float*(self._range*2+1), "data/ioe_metric.float")) # output joint stream preamble_stream = gr.streams_to_vector(fft_length * gr.sizeof_gr_complex, 2) self.connect(fft_sym1, (preamble_stream,0)) self.connect(fft_sym2, (preamble_stream,1)) self.connect(preamble_stream, gr.file_sink(gr.sizeof_gr_complex * 2 * fft_length, "data/preambles.compl")) # output, preambles before and after correction, magnitude and complex spectrum self.connect(sampler_symbol1, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre1_bef.compl")) self.connect(sampler_symbol1, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre1_bef.float")) self.connect(sampler_symbol2, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre2_bef.compl")) self.connect(sampler_symbol2, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre2_bef.float")) self.connect(freq_shift_sym1, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length,"data/pre1.compl")) self.connect(freq_shift_sym1, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length,"data/pre1.float")) self.connect(freq_shift_sym2, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length,"data/pre2.compl")) self.connect(freq_shift_sym2, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length,"data/pre2.float")) # calculate epsilon from corrected source to check function test_cp = cyclic_prefixer(fft_length, block_length) test_eps = foe(fft_length) self.connect(freq_shift_sym1, test_cp, test_eps, gr.file_sink(gr.sizeof_float, "data/eps_after.float")) try: gr.hier_block.update_var_names(self, "ifo_estimator", vars()) gr.hier_block.update_var_names(self, "ifo_estimator", vars(self)) except: pass
def __init__(self, fft_length, block_length, block_header, range, options): gr.hier_block2.__init__( self, "integer_fo_estimator", gr.io_signature3(3, 3, gr.sizeof_gr_complex, gr.sizeof_float, gr.sizeof_char), gr.io_signature2(3, 3, gr.sizeof_float, gr.sizeof_char)) raise NotImplementedError, "Obsolete class" self._range = range # threshold after integer part frequency offset estimation # if peak value below threshold, assume false triggering self._thr_lo = 0.4 #0.19 # empirically found threshold. see ioe_metric.float self._thr_hi = 0.4 #0.2 # stuff to be removed after bugfix for hierblock2s self.input = gr.kludge_copy(gr.sizeof_gr_complex) self.time_sync = gr.kludge_copy(gr.sizeof_char) self.epsilon = (self, 1) self.connect((self, 0), self.input) self.connect((self, 2), self.time_sync) delay(gr.sizeof_char, block_header.schmidl_fine_sync[0] * block_length) # sample ofdm symbol (preamble 1 and 2) sampler_symbol1 = vector_sampler(gr.sizeof_gr_complex, fft_length) sampler_symbol2 = vector_sampler(gr.sizeof_gr_complex, fft_length) time_delay1 = delay(gr.sizeof_char, block_length * block_header.schmidl_fine_sync[1]) self.connect(self.input, (sampler_symbol1, 0)) self.connect(self.input, (sampler_symbol2, 0)) if block_header.schmidl_fine_sync[0] > 0: time_delay0 = delay( gr.sizeof_char, block_length * block_header.schmidl_fine_sync[0]) self.connect(self.time_sync, time_delay0, (sampler_symbol1, 1)) else: self.connect(self.time_sync, (sampler_symbol1, 1)) self.connect(self.time_sync, time_delay1, (sampler_symbol2, 1)) # negative fractional frequency offset estimate epsilon = gr.multiply_const_ff(-1.0) self.connect(self.epsilon, epsilon) # compensate for fractional frequency offset on per symbol base # freq_shift: vector length, modulator sensitivity # freq_shift third input: reset phase accumulator # symbol/preamble 1 freq_shift_sym1 = frequency_shift_vcc(fft_length, 1.0 / fft_length) self.connect(sampler_symbol1, (freq_shift_sym1, 0)) self.connect(epsilon, (freq_shift_sym1, 1)) self.connect(gr.vector_source_b([1], True), (freq_shift_sym1, 2)) # symbol/preamble 2 freq_shift_sym2 = frequency_shift_vcc(fft_length, 1.0 / fft_length) self.connect(sampler_symbol2, (freq_shift_sym2, 0)) self.connect(epsilon, (freq_shift_sym2, 1)) self.connect(gr.vector_source_b([1], True), (freq_shift_sym2, 2)) # fourier transfrom on both preambles fft_sym1 = gr.fft_vcc(fft_length, True, [], True) # Forward + Blockshift fft_sym2 = gr.fft_vcc(fft_length, True, [], True) # Forward + Blockshift # calculate schmidl's metric for estimation of freq. offset's integer part assert (hasattr(block_header, "schmidl_fine_sync")) pre1 = block_header.pilotsym_fd[block_header.schmidl_fine_sync[0]] pre2 = block_header.pilotsym_fd[block_header.schmidl_fine_sync[1]] diff_pn = concatenate( [[conjugate(math.sqrt(2) * pre2[2 * i] / pre1[2 * i]), 0.0j] for i in arange(len(pre1) / 2)]) cfo_estimator = schmidl_cfo_estimator(fft_length, len(pre1), self._range, diff_pn) self.connect(freq_shift_sym1, fft_sym1, (cfo_estimator, 0)) # preamble 1 self.connect(freq_shift_sym2, fft_sym2, (cfo_estimator, 1)) # preamble 2 # search for maximum and its argument in interval [-range .. +range] #arg_max = arg_max_vff(2*self._range + 1) arg_max_s = gr.argmax_fs(2 * self._range + 1) arg_max = gr.short_to_float() ifo_max = gr.max_ff(2 * self._range + 1) # vlen ifo_estimate = gr.add_const_ff(-self._range) self.connect(cfo_estimator, arg_max_s, arg_max, ifo_estimate) self.connect(cfo_estimator, ifo_max) self.connect((arg_max_s, 1), gr.null_sink(gr.sizeof_short)) # threshold maximal value ifo_threshold = gr.threshold_ff(self._thr_lo, self._thr_hi, 0.0) ifo_thr_f2b = gr.float_to_char() self.connect(ifo_max, ifo_threshold, ifo_thr_f2b) # gating the streams ifo_estimate (integer part) and epsilon (frac. part) # if the metric's peak value was above the chosen threshold, assume to have # found a new burst. peak value below threshold results in blocking the # streams self.gate = gate_ff() self.connect(ifo_thr_f2b, (self.gate, 0)) # threshold stream self.connect(ifo_estimate, (self.gate, 1)) self.connect(epsilon, (self.gate, 2)) # peak filtering # resynchronize and suppress peaks that didn't match a preamble filtered_time_sync = peak_resync_bb(True) # replace self.connect(self.time_sync, (filtered_time_sync, 0)) self.connect(ifo_thr_f2b, (filtered_time_sync, 1)) # find complete estimation for frequency offset # add together fractional and integer part freq_offset = gr.add_ff() self.connect((self.gate, 1), gr.multiply_const_ff(-1.0), (freq_offset, 0)) # integer offset self.connect((self.gate, 2), (freq_offset, 1)) # frac offset # output connections self.connect(freq_offset, (self, 0)) self.connect(filtered_time_sync, (self, 1)) self.connect((self.gate, 0), (self, 2)) # used for frame trigger ######################################### # debugging if options.log: self.epsilon2_sink = gr.vector_sink_f() self.connect(epsilon, self.epsilon2_sink) self.connect( cfo_estimator, gr.file_sink(gr.sizeof_float * (self._range * 2 + 1), "data/ioe_metric.float")) # output joint stream preamble_stream = gr.streams_to_vector( fft_length * gr.sizeof_gr_complex, 2) self.connect(fft_sym1, (preamble_stream, 0)) self.connect(fft_sym2, (preamble_stream, 1)) self.connect( preamble_stream, gr.file_sink(gr.sizeof_gr_complex * 2 * fft_length, "data/preambles.compl")) # output, preambles before and after correction, magnitude and complex spectrum self.connect( sampler_symbol1, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre1_bef.compl")) self.connect( sampler_symbol1, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre1_bef.float")) self.connect( sampler_symbol2, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre2_bef.compl")) self.connect( sampler_symbol2, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre2_bef.float")) self.connect( freq_shift_sym1, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre1.compl")) self.connect( freq_shift_sym1, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre1.float")) self.connect( freq_shift_sym2, gr.fft_vcc(fft_length, True, [], True), gr.file_sink(gr.sizeof_gr_complex * fft_length, "data/pre2.compl")) self.connect( freq_shift_sym2, gr.fft_vcc(fft_length, True, [], True), gr.complex_to_mag(fft_length), gr.file_sink(gr.sizeof_float * fft_length, "data/pre2.float")) # calculate epsilon from corrected source to check function test_cp = cyclic_prefixer(fft_length, block_length) test_eps = foe(fft_length) self.connect(freq_shift_sym1, test_cp, test_eps, gr.file_sink(gr.sizeof_float, "data/eps_after.float")) try: gr.hier_block.update_var_names(self, "ifo_estimator", vars()) gr.hier_block.update_var_names(self, "ifo_estimator", vars(self)) except: pass