def call(self, inputs): """Implements call() for the layer.""" unpacked_inputs = tf_utils.unpack_inputs(inputs) word_embeddings = unpacked_inputs[0] token_type_ids = unpacked_inputs[1] input_shape = tf_utils.get_shape_list(word_embeddings, expected_rank=3) batch_size = input_shape[0] seq_length = input_shape[1] width = input_shape[2] output = word_embeddings if self.use_type_embeddings: flat_token_type_ids = tf.reshape(token_type_ids, [-1]) token_type_embeddings = tf.gather(self.type_embeddings, flat_token_type_ids) token_type_embeddings = tf.reshape(token_type_embeddings, [batch_size, seq_length, width]) output += token_type_embeddings if self.use_position_embeddings: position_embeddings = tf.expand_dims(tf.slice( self.position_embeddings, [0, 0], [seq_length, width]), axis=0) output += position_embeddings output = self.output_layer_norm(output) output = self.output_dropout(output) return output
def call(self, inputs): """Implements call() for the layer.""" unpacked_inputs = tf_utils.unpack_inputs(inputs) lm_output = unpacked_inputs[0] sentence_output = unpacked_inputs[1] lm_label_ids = unpacked_inputs[2] lm_label_ids = tf.keras.backend.reshape(lm_label_ids, [-1]) lm_label_ids_one_hot = tf.keras.backend.one_hot( lm_label_ids, self.config.vocab_size) lm_label_weights = tf.keras.backend.cast(unpacked_inputs[3], tf.float32) lm_label_weights = tf.keras.backend.reshape(lm_label_weights, [-1]) lm_per_example_loss = -tf.keras.backend.sum( lm_output * lm_label_ids_one_hot, axis=[-1]) numerator = tf.keras.backend.sum(lm_label_weights * lm_per_example_loss) denominator = tf.keras.backend.sum(lm_label_weights) + 1e-5 mask_label_loss = numerator / denominator sentence_labels = unpacked_inputs[4] sentence_labels = tf.keras.backend.reshape(sentence_labels, [-1]) sentence_label_one_hot = tf.keras.backend.one_hot(sentence_labels, 2) per_example_loss_sentence = -tf.keras.backend.sum( sentence_label_one_hot * sentence_output, axis=-1) sentence_loss = tf.keras.backend.mean(per_example_loss_sentence) loss = mask_label_loss + sentence_loss # TODO(hongkuny): Avoids the hack and switches add_loss. final_loss = tf.fill(tf.keras.backend.shape(per_example_loss_sentence), loss) self._add_metrics(lm_output, lm_label_ids, lm_label_weights, lm_per_example_loss, sentence_output, sentence_labels, per_example_loss_sentence) return final_loss
def call(self, inputs, return_all_layers=False): """Implements call() for the layer. Args: inputs: packed inputs. return_all_layers: bool, whether to return outputs of all layers inside encoders. Returns: Output tensor of the last layer or a list of output tensors. """ unpacked_inputs = tf_utils.unpack_inputs(inputs) input_tensor = unpacked_inputs[0] attention_mask = unpacked_inputs[1] output_tensor = input_tensor all_layer_outputs = [] for layer in self.layers: output_tensor = layer(output_tensor, attention_mask) all_layer_outputs.append(output_tensor) if return_all_layers: return all_layer_outputs return all_layer_outputs[-1]
def call(self, inputs): """Implements call() for the layer.""" (input_tensor, attention_mask) = tf_utils.unpack_inputs(inputs) attention_output = self.attention_layer( from_tensor=input_tensor, to_tensor=input_tensor, attention_mask=attention_mask) attention_output = self.attention_output_dense(attention_output) attention_output = self.attention_dropout(attention_output) # Use float32 in keras layer norm and the gelu activation in the # intermediate dense layer for numeric stability attention_output = self.attention_layer_norm(input_tensor + attention_output) if self.float_type == tf.float16: attention_output = tf.cast(attention_output, tf.float16) intermediate_output = self.intermediate_dense(attention_output) if self.float_type == tf.float16: intermediate_output = tf.cast(intermediate_output, tf.float16) layer_output = self.output_dense(intermediate_output) layer_output = self.output_dropout(layer_output) # Use float32 in keras layer norm for numeric stability layer_output = self.output_layer_norm(layer_output + attention_output) if self.float_type == tf.float16: layer_output = tf.cast(layer_output, tf.float16) return layer_output
def call(self, inputs): """Implements call() for the layer.""" (input_tensor, attention_mask) = tf_utils.unpack_inputs(inputs) attention_output = self.attention_layer(from_tensor=input_tensor, to_tensor=input_tensor, attention_mask=attention_mask) attention_output = self.attention_output_dense(attention_output) attention_output = self.attention_dropout(attention_output) # Use float32 in keras layer norm and the gelu activation in the # intermediate dense layer for numeric stability # TODO(reedwm): These casts are probably unnecessary, as we passed # dtype=tf.float32 to the layer norm constructor, so it will cast its inputs # to float32 automatically. These manual casts additionally do the "+" # operator in float32, but "+" is numerically stable in float16. if self.float_type == tf.float16: input_tensor = tf.cast(input_tensor, tf.float32) attention_output = tf.cast(attention_output, tf.float32) attention_output = self.attention_layer_norm(input_tensor + attention_output) intermediate_output = self.intermediate_dense(attention_output) if self.float_type == tf.float16: intermediate_output = tf.cast(intermediate_output, tf.float16) layer_output = self.output_dense(intermediate_output) layer_output = self.output_dropout(layer_output) # Use float32 in keras layer norm for numeric stability if self.float_type == tf.float16: layer_output = tf.cast(layer_output, tf.float32) layer_output = self.output_layer_norm(layer_output + attention_output) if self.float_type == tf.float16: layer_output = tf.cast(layer_output, tf.float16) return layer_output
def call(self, inputs): """Implements call() for the layer.""" unpacked_inputs = tf_utils.unpack_inputs(inputs) lm_output = unpacked_inputs[0] sentence_output = unpacked_inputs[1] lm_label_ids = unpacked_inputs[2] lm_label_weights = tf.keras.backend.cast(unpacked_inputs[3], tf.float32) sentence_labels = unpacked_inputs[4] mask_label_loss = losses.weighted_sparse_categorical_crossentropy_loss( labels=lm_label_ids, predictions=lm_output, weights=lm_label_weights) sentence_loss = losses.weighted_sparse_categorical_crossentropy_loss( labels=sentence_labels, predictions=sentence_output) loss = mask_label_loss + sentence_loss batch_shape = tf.slice(tf.keras.backend.shape(sentence_labels), [0], [1]) # TODO(hongkuny): Avoids the hack and switches add_loss. final_loss = tf.fill(batch_shape, loss) self._add_metrics(lm_output, lm_label_ids, lm_label_weights, mask_label_loss, sentence_output, sentence_labels, sentence_loss) return final_loss
def call(self, inputs, mode="bert"): """Implements call() for the layer. Args: inputs: packed input tensors. mode: string, `bert` or `encoder`. Returns: Output tensor of the last layer for BERT training (mode=`bert`) which is a float Tensor of shape [batch_size, seq_length, hidden_size] or a list of output tensors for encoder usage (mode=`encoder`). """ unpacked_inputs = tf_utils.unpack_inputs(inputs) input_word_ids = unpacked_inputs[0] input_mask = unpacked_inputs[1] input_type_ids = unpacked_inputs[2] word_embeddings = self.embedding_lookup(input_word_ids) embedding_tensor = self.embedding_postprocessor( word_embeddings=word_embeddings, token_type_ids=input_type_ids) if self.float_type == tf.float16: embedding_tensor = tf.cast(embedding_tensor, tf.float16) attention_mask = None if input_mask is not None: attention_mask = create_attention_mask_from_input_mask( input_word_ids, input_mask) if mode == "encoder": return self.encoder( embedding_tensor, attention_mask, return_all_layers=True) sequence_output = self.encoder(embedding_tensor, attention_mask) first_token_tensor = tf.squeeze(sequence_output[:, 0:1, :], axis=1) pooled_output = self.pooler_transform(first_token_tensor) return (pooled_output, sequence_output)
def call(self, inputs): """Implements call() for the layer.""" (hidden, labels) = tf_utils.unpack_inputs(inputs) logits = self.proj_layer(hidden) one_hot_target = tf.one_hot(labels, self.n_class, dtype=hidden.dtype) # pytype: disable=attribute-error loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1) return loss, logits
def call(self, inputs): """Implements call() for the layer.""" (from_tensor, to_tensor, attention_mask) = tf_utils.unpack_inputs(inputs) # Scalar dimensions referenced here: # B = batch size (number of sequences) # F = `from_tensor` sequence length # T = `to_tensor` sequence length # N = `num_attention_heads` # H = `size_per_head` # `query_tensor` = [B, F, N ,H] query_tensor = self.query_dense(from_tensor) # `key_tensor` = [B, T, N, H] key_tensor = self.key_dense(to_tensor) # `value_tensor` = [B, T, N, H] value_tensor = self.value_dense(to_tensor) # Take the dot product between "query" and "key" to get the raw # attention scores. attention_scores = tf.einsum("BTNH,BFNH->BNFT", key_tensor, query_tensor) attention_scores = tf.multiply( attention_scores, 1.0 / math.sqrt(float(self.size_per_head))) if attention_mask is not None: # `attention_mask` = [B, 1, F, T] attention_mask = tf.expand_dims(attention_mask, axis=[1]) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. adder = (1.0 - tf.cast(attention_mask, attention_scores.dtype)) * -10000.0 # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_scores += adder # Normalize the attention scores to probabilities. # `attention_probs` = [B, N, F, T] attention_probs = tf.nn.softmax(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.attention_probs_dropout(attention_probs) # `context_layer` = [B, F, N, H] context_tensor = tf.einsum("BNFT,BTNH->BFNH", attention_probs, value_tensor) return context_tensor
def call(self, inputs): """Implements call() for the layer.""" (h, g, r, r_w_bias, r_r_bias, seg_mat, r_s_bias, seg_embed, attn_mask_h, attn_mask_g, mems, target_mapping) = tf_utils.unpack_inputs(inputs) if mems is not None and mems.shape.ndims > 1: cat = tf.concat([mems, h], 0) else: cat = h # content heads q_head_h = tf.einsum('ibh,hnd->ibnd', h, self.qh_projection_layer) k_head_h = tf.einsum('ibh,hnd->ibnd', cat, self.kh_projection_layer) v_head_h = tf.einsum('ibh,hnd->ibnd', cat, self.vh_projection_layer) # positional heads k_head_r = tf.einsum('ibh,hnd->ibnd', r, self.kr_projection_layer) # core attention ops attn_vec_h = self.relative_attention_layer( q_head_h, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask_h) # post processing output_h = tf.einsum('ibnd,hnd->ibh', attn_vec_h, self.proj_o) output_h = self.attention_dropout(output_h) output_h = self.output_layer_norm(output_h + h) output_g = None if g is not None: # enable two-stream attention # g-stream q_head_g = tf.einsum('ibh,hnd->ibnd', g, self.qh_projection_layer) if target_mapping is not None: q_head_g = tf.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping) attn_vec_g = self.relative_attention_layer( q_head_g, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask_g) attn_vec_g = tf.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping) else: attn_vec_g = self.relative_attention_layer( q_head_g, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask_g) # post processing output_g = tf.einsum('ibnd,hnd->ibh', attn_vec_g, self.proj_o) output_g = self.attention_dropout(output_g) output_g = self.output_layer_norm(output_g + g) return (output_h, output_g)
def call(self, inputs): """Implements call() for the layer.""" unpacked_inputs = tf_utils.unpack_inputs(inputs) pooled_output = unpacked_inputs[0] sequence_output = unpacked_inputs[1] masked_lm_positions = unpacked_inputs[2] mask_lm_input_tensor = gather_indexes(sequence_output, masked_lm_positions) lm_output = self.lm_dense(mask_lm_input_tensor) lm_output = self.lm_layer_norm(lm_output) lm_output = tf.matmul(lm_output, self.embedding_table, transpose_b=True) lm_output = tf.nn.bias_add(lm_output, self.output_bias) lm_output = tf.nn.log_softmax(lm_output, axis=-1) logits = tf.matmul(pooled_output, self.next_seq_weights, transpose_b=True) logits = tf.nn.bias_add(logits, self.next_seq_bias) sentence_output = tf.nn.log_softmax(logits, axis=-1) return (lm_output, sentence_output)
def call(self, inputs): """Implements call() for the layer.""" (hidden, target, lookup_table, tgt_mask) = tf_utils.unpack_inputs(inputs) if self.use_proj: hidden = self.proj_layer_norm(self.proj_layer(hidden)) if self.tie_weight: logits = tf.einsum('ibd,nd->ibn', hidden, lookup_table) + self.softmax_b else: logits = tf.einsum('ibd,nd->ibn', hidden, self.softmax_w) + self.softmax_b if self.use_tpu: one_hot_target = tf.one_hot(target, self.n_token, dtype=logits.dtype) loss = -tf.reduce_sum(tf.nn.log_softmax(logits) * one_hot_target, -1) else: loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=target, logits=logits) total_loss = tf.reduce_sum(loss * tgt_mask) / tf.reduce_sum(tgt_mask) return total_loss, logits
def call(self, inputs): """Implements call() for the layer.""" (q_head, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask) = tf_utils.unpack_inputs(inputs) # content based attention score ac = tf.einsum('ibnd,jbnd->ijbn', q_head + r_w_bias, k_head_h) # position based attention score bd = tf.einsum('ibnd,jbnd->ijbn', q_head + r_r_bias, k_head_r) bd = rel_shift(bd, klen=tf.shape(ac)[1]) # segment-based attention score if seg_mat is None: ef = 0 else: ef = tf.einsum('ibnd,snd->isbn', q_head + r_s_bias, seg_embed) tgt_shape = tf.shape(bd) ef = tf.where( tf.broadcast_to(tf.expand_dims(seg_mat, 3), tgt_shape), tf.broadcast_to(ef[:, 1:, :, :], tgt_shape), tf.broadcast_to(ef[:, :1, :, :], tgt_shape)) # merges attention scores and performs masking attn_score = (ac + bd + ef) * self.scale if attn_mask is not None: attn_score = attn_score - 1e30 * attn_mask # attention probability attn_prob = tf.nn.softmax(attn_score, 1) attn_prob = self.attention_probs_dropout(attn_prob) # attention output attn_vec = tf.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h) return attn_vec