def test_train_check_callbacks(self, distribution):
        model_dir = self.get_temp_dir()
        callback = RecordingCallback()
        callbacks = [callback]
        input_fn = create_fake_data_input_fn(batch_size=8,
                                             features_shape=[128],
                                             num_classes=3)
        model_training_utils.run_customized_training_loop(
            strategy=distribution,
            model_fn=self._model_fn,
            loss_fn=tf.keras.losses.categorical_crossentropy,
            model_dir=model_dir,
            steps_per_epoch=20,
            steps_per_loop=10,
            epochs=2,
            train_input_fn=input_fn,
            eval_input_fn=input_fn,
            eval_steps=10,
            init_checkpoint=None,
            metric_fn=metric_fn,
            custom_callbacks=callbacks,
            run_eagerly=False)
        self.assertEqual(callback.epoch_begin, [(1, {}), (2, {})])
        epoch_ends, epoch_end_infos = zip(*callback.epoch_end)
        self.assertEqual(list(epoch_ends), [1, 2])
        for info in epoch_end_infos:
            self.assertIn('accuracy', info)

        self.assertEqual(callback.batch_begin, [(0, {}), (10, {}), (20, {}),
                                                (30, {})])
        batch_ends, batch_end_infos = zip(*callback.batch_end)
        self.assertEqual(list(batch_ends), [9, 19, 29, 39])
        for info in batch_end_infos:
            self.assertIn('loss', info)
示例#2
0
def run_customized_training(strategy,
                            bert_config,
                            init_checkpoint,
                            max_seq_length,
                            max_predictions_per_seq,
                            model_dir,
                            steps_per_epoch,
                            steps_per_loop,
                            epochs,
                            initial_lr,
                            warmup_steps,
                            end_lr,
                            optimizer_type,
                            input_files,
                            train_batch_size,
                            use_next_sentence_label=True,
                            train_summary_interval=0,
                            custom_callbacks=None):
    """Run BERT pretrain model training using low-level API."""

    train_input_fn = get_pretrain_dataset_fn(input_files, max_seq_length,
                                             max_predictions_per_seq,
                                             train_batch_size,
                                             use_next_sentence_label)

    def _get_pretrain_model():
        """Gets a pretraining model."""
        pretrain_model, core_model = bert_models.pretrain_model(
            bert_config,
            max_seq_length,
            max_predictions_per_seq,
            use_next_sentence_label=use_next_sentence_label)
        optimizer = optimization.create_optimizer(initial_lr,
                                                  steps_per_epoch * epochs,
                                                  warmup_steps, end_lr,
                                                  optimizer_type)
        pretrain_model.optimizer = performance.configure_optimizer(
            optimizer,
            use_float16=common_flags.use_float16(),
            use_graph_rewrite=common_flags.use_graph_rewrite())
        return pretrain_model, core_model

    trained_model = model_training_utils.run_customized_training_loop(
        strategy=strategy,
        model_fn=_get_pretrain_model,
        loss_fn=get_loss_fn(),
        scale_loss=FLAGS.scale_loss,
        model_dir=model_dir,
        init_checkpoint=init_checkpoint,
        train_input_fn=train_input_fn,
        steps_per_epoch=steps_per_epoch,
        steps_per_loop=steps_per_loop,
        epochs=epochs,
        sub_model_export_name='pretrained/bert_model',
        train_summary_interval=train_summary_interval,
        custom_callbacks=custom_callbacks)

    return trained_model
示例#3
0
 def run_training(self, strategy, model_dir, steps_per_loop, run_eagerly):
     input_fn = create_fake_data_input_fn(batch_size=8,
                                          features_shape=[128],
                                          num_classes=3)
     model_training_utils.run_customized_training_loop(
         strategy=strategy,
         model_fn=self._model_fn,
         loss_fn=tf.keras.losses.categorical_crossentropy,
         model_dir=model_dir,
         steps_per_epoch=20,
         steps_per_loop=steps_per_loop,
         epochs=2,
         train_input_fn=input_fn,
         eval_input_fn=input_fn,
         eval_steps=10,
         init_checkpoint=None,
         metric_fn=metric_fn,
         custom_callbacks=None,
         run_eagerly=run_eagerly)
示例#4
0
def run_customized_training(strategy,
                            bert_config,
                            max_seq_length,
                            max_predictions_per_seq,
                            model_dir,
                            steps_per_epoch,
                            steps_per_loop,
                            epochs,
                            initial_lr,
                            warmup_steps,
                            input_files,
                            train_batch_size):
  """Run BERT pretrain model training using low-level API."""

  train_input_fn = get_pretrain_dataset_fn(input_files, max_seq_length,
                                           max_predictions_per_seq,
                                           train_batch_size)

  def _get_pretrain_model():
    """Gets a pretraining model."""
    pretrain_model, core_model = bert_models.pretrain_model(
        bert_config, max_seq_length, max_predictions_per_seq)
    optimizer = optimization.create_optimizer(
        initial_lr, steps_per_epoch * epochs, warmup_steps)
    pretrain_model.optimizer = performance.configure_optimizer(
        optimizer,
        use_float16=common_flags.use_float16(),
        use_graph_rewrite=common_flags.use_graph_rewrite())
    return pretrain_model, core_model

  trained_model = model_training_utils.run_customized_training_loop(
      strategy=strategy,
      model_fn=_get_pretrain_model,
      loss_fn=get_loss_fn(),
      scale_loss=FLAGS.scale_loss,
      model_dir=model_dir,
      train_input_fn=train_input_fn,
      steps_per_epoch=steps_per_epoch,
      steps_per_loop=steps_per_loop,
      epochs=epochs,
      sub_model_export_name='pretrained/bert_model')

  return trained_model
def train_squad(strategy,
                input_meta_data,
                bert_config,
                custom_callbacks=None,
                run_eagerly=False,
                init_checkpoint=None,
                sub_model_export_name=None):
    """Run bert squad training."""
    if strategy:
        logging.info(
            'Training using customized training loop with distribution'
            ' strategy.')
    # Enables XLA in Session Config. Should not be set for TPU.
    keras_utils.set_session_config(FLAGS.enable_xla)
    performance.set_mixed_precision_policy(common_flags.dtype())

    epochs = FLAGS.num_train_epochs
    num_train_examples = input_meta_data['train_data_size']
    max_seq_length = input_meta_data['max_seq_length']
    steps_per_epoch = int(num_train_examples / FLAGS.train_batch_size)
    warmup_steps = int(epochs * num_train_examples * 0.1 /
                       FLAGS.train_batch_size)
    train_input_fn = get_dataset_fn(FLAGS.train_data_path,
                                    max_seq_length,
                                    FLAGS.train_batch_size,
                                    is_training=True)

    def _get_squad_model():
        """Get Squad model and optimizer."""
        squad_model, core_model = bert_models.squad_model(
            bert_config,
            max_seq_length,
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable)
        optimizer = optimization.create_optimizer(FLAGS.learning_rate,
                                                  steps_per_epoch * epochs,
                                                  warmup_steps, FLAGS.end_lr,
                                                  FLAGS.optimizer_type)

        squad_model.optimizer = performance.configure_optimizer(
            optimizer,
            use_float16=common_flags.use_float16(),
            use_graph_rewrite=common_flags.use_graph_rewrite())
        return squad_model, core_model

    # Only when explicit_allreduce = True, post_allreduce_callbacks and
    # allreduce_bytes_per_pack will take effect. optimizer.apply_gradients() no
    # longer implicitly allreduce gradients, users manually allreduce gradient and
    # pass the allreduced grads_and_vars to apply_gradients().
    # With explicit_allreduce = True, clip_by_global_norm is moved to after
    # allreduce.
    model_training_utils.run_customized_training_loop(
        strategy=strategy,
        model_fn=_get_squad_model,
        loss_fn=get_loss_fn(),
        model_dir=FLAGS.model_dir,
        steps_per_epoch=steps_per_epoch,
        steps_per_loop=FLAGS.steps_per_loop,
        epochs=epochs,
        train_input_fn=train_input_fn,
        init_checkpoint=init_checkpoint or FLAGS.init_checkpoint,
        sub_model_export_name=sub_model_export_name,
        run_eagerly=run_eagerly,
        custom_callbacks=custom_callbacks,
        explicit_allreduce=FLAGS.explicit_allreduce,
        pre_allreduce_callbacks=[
            model_training_utils.clip_by_global_norm_callback
        ],
        allreduce_bytes_per_pack=FLAGS.allreduce_bytes_per_pack)
示例#6
0
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
                        train_input_fn,
                        eval_input_fn,
                        custom_callbacks=None,
                        run_eagerly=False,
                        use_keras_compile_fit=False):
    """Run BERT classifier training using low-level API."""
    max_seq_length = input_meta_data['max_seq_length']
    num_classes = input_meta_data['num_labels']

    def _get_classifier_model():
        """Gets a classifier model."""
        classifier_model, core_model = (bert_models.classifier_model(
            bert_config,
            num_classes,
            max_seq_length,
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable))
        optimizer = optimization.create_optimizer(initial_lr,
                                                  steps_per_epoch * epochs,
                                                  warmup_steps)
        classifier_model.optimizer = performance.configure_optimizer(
            optimizer,
            use_float16=common_flags.use_float16(),
            use_graph_rewrite=common_flags.use_graph_rewrite())
        return classifier_model, core_model

    loss_fn = get_loss_fn(num_classes)

    # Defines evaluation metrics function, which will create metrics in the
    # correct device and strategy scope.
    def metric_fn():
        return tf.keras.metrics.SparseCategoricalAccuracy('test_accuracy',
                                                          dtype=tf.float32)

    if use_keras_compile_fit:
        # Start training using Keras compile/fit API.
        logging.info('Training using TF 2.0 Keras compile/fit API with '
                     'distribution strategy.')
        return run_keras_compile_fit(model_dir,
                                     strategy,
                                     _get_classifier_model,
                                     train_input_fn,
                                     eval_input_fn,
                                     loss_fn,
                                     metric_fn,
                                     init_checkpoint,
                                     epochs,
                                     steps_per_epoch,
                                     steps_per_loop,
                                     eval_steps,
                                     custom_callbacks=custom_callbacks)

    # Use user-defined loop to start training.
    logging.info('Training using customized training loop TF 2.0 with '
                 'distribution strategy.')
    return model_training_utils.run_customized_training_loop(
        strategy=strategy,
        model_fn=_get_classifier_model,
        loss_fn=loss_fn,
        model_dir=model_dir,
        steps_per_epoch=steps_per_epoch,
        steps_per_loop=steps_per_loop,
        epochs=epochs,
        train_input_fn=train_input_fn,
        eval_input_fn=eval_input_fn,
        eval_steps=eval_steps,
        init_checkpoint=init_checkpoint,
        metric_fn=metric_fn,
        custom_callbacks=custom_callbacks,
        run_eagerly=run_eagerly)
示例#7
0
def run_bert_classifier(strategy,
                        bert_config,
                        input_meta_data,
                        model_dir,
                        epochs,
                        steps_per_epoch,
                        steps_per_loop,
                        eval_steps,
                        warmup_steps,
                        initial_lr,
                        init_checkpoint,
                        train_input_fn,
                        eval_input_fn,
                        custom_callbacks=None,
                        run_eagerly=False,
                        use_keras_compile_fit=False):
    """Run BERT classifier training using low-level API."""
    max_seq_length = input_meta_data['max_seq_length']
    num_classes = input_meta_data['num_labels']

    def _get_classifier_model():
        """Gets a classifier model."""
        classifier_model, core_model = (bert_models.classifier_model(
            bert_config,
            num_classes,
            max_seq_length,
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable))
        classifier_model.optimizer = optimization.create_optimizer(
            initial_lr, steps_per_epoch * epochs, warmup_steps)
        if FLAGS.fp16_implementation == 'graph_rewrite':
            # Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
            # determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
            # which will ensure tf.compat.v2.keras.mixed_precision and
            # tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
            # up.
            classifier_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
                classifier_model.optimizer)
        return classifier_model, core_model

    # During distributed training, loss used for gradient computation is
    # summed over from all replicas. When Keras compile/fit() API is used,
    # the fit() API internally normalizes the loss by dividing the loss by
    # the number of replicas used for computation. However, when custom
    # training loop is used this is not done automatically and should be
    # done manually by the end user.
    loss_multiplier = 1.0
    if FLAGS.scale_loss and not use_keras_compile_fit:
        loss_multiplier = 1.0 / strategy.num_replicas_in_sync

    loss_fn = get_loss_fn(num_classes, loss_factor=loss_multiplier)

    # Defines evaluation metrics function, which will create metrics in the
    # correct device and strategy scope.
    def metric_fn():
        return tf.keras.metrics.SparseCategoricalAccuracy('accuracy',
                                                          dtype=tf.float32)

    if use_keras_compile_fit:
        # Start training using Keras compile/fit API.
        logging.info('Training using TF 2.0 Keras compile/fit API with '
                     'distribution strategy.')
        return run_keras_compile_fit(model_dir,
                                     strategy,
                                     _get_classifier_model,
                                     train_input_fn,
                                     eval_input_fn,
                                     loss_fn,
                                     metric_fn,
                                     init_checkpoint,
                                     epochs,
                                     steps_per_epoch,
                                     eval_steps,
                                     input_meta_data['labels_list'],
                                     custom_callbacks=None)

    # Use user-defined loop to start training.
    logging.info('Training using customized training loop TF 2.0 with '
                 'distribution strategy.')
    return model_training_utils.run_customized_training_loop(
        strategy=strategy,
        model_fn=_get_classifier_model,
        loss_fn=loss_fn,
        model_dir=model_dir,
        steps_per_epoch=steps_per_epoch,
        steps_per_loop=steps_per_loop,
        epochs=epochs,
        train_input_fn=train_input_fn,
        eval_input_fn=eval_input_fn,
        eval_steps=eval_steps,
        init_checkpoint=init_checkpoint,
        metric_fn=metric_fn,
        custom_callbacks=custom_callbacks,
        run_eagerly=run_eagerly)
示例#8
0
def train_squad(strategy,
                input_meta_data,
                bert_config,
                custom_callbacks=None,
                run_eagerly=False):
    """Run bert squad training."""
    if strategy:
        logging.info(
            'Training using customized training loop with distribution'
            ' strategy.')
    # Enables XLA in Session Config. Should not be set for TPU.
    keras_utils.set_config_v2(FLAGS.enable_xla)
    performance.set_mixed_precision_policy(common_flags.dtype())

    epochs = FLAGS.num_train_epochs
    num_train_examples = input_meta_data['train_data_size']
    max_seq_length = input_meta_data['max_seq_length']
    steps_per_epoch = int(num_train_examples / FLAGS.train_batch_size)
    warmup_steps = int(epochs * num_train_examples * 0.1 /
                       FLAGS.train_batch_size)
    train_input_fn = get_dataset_fn(FLAGS.train_data_path,
                                    max_seq_length,
                                    FLAGS.train_batch_size,
                                    is_training=True)

    def _get_squad_model():
        """Get Squad model and optimizer."""
        squad_model, core_model = bert_models.squad_model(
            bert_config,
            max_seq_length,
            hub_module_url=FLAGS.hub_module_url,
            hub_module_trainable=FLAGS.hub_module_trainable)
        optimizer = optimization.create_optimizer(FLAGS.learning_rate,
                                                  steps_per_epoch * epochs,
                                                  warmup_steps,
                                                  FLAGS.optimizer_type)

        squad_model.optimizer = performance.configure_optimizer(
            optimizer,
            use_float16=common_flags.use_float16(),
            use_graph_rewrite=common_flags.use_graph_rewrite())
        return squad_model, core_model

    # If explicit_allreduce = True, apply_gradients() no longer implicitly
    # allreduce gradients, users manually allreduce gradient and pass the
    # allreduced grads_and_vars to apply_gradients(). clip_by_global_norm will be
    # applied to allreduced gradients.
    def clip_by_global_norm_callback(grads_and_vars):
        grads, variables = zip(*grads_and_vars)
        (clipped_grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
        return zip(clipped_grads, variables)

    model_training_utils.run_customized_training_loop(
        strategy=strategy,
        model_fn=_get_squad_model,
        loss_fn=get_loss_fn(),
        model_dir=FLAGS.model_dir,
        steps_per_epoch=steps_per_epoch,
        steps_per_loop=FLAGS.steps_per_loop,
        epochs=epochs,
        train_input_fn=train_input_fn,
        init_checkpoint=FLAGS.init_checkpoint,
        run_eagerly=run_eagerly,
        custom_callbacks=custom_callbacks,
        explicit_allreduce=False,
        post_allreduce_callbacks=[clip_by_global_norm_callback])
示例#9
0
    def run_classifier(self, train_input_fn, validation_input_fn, epochs,
                       steps_per_epoch, validation_steps, num_classes):
        """Creates classifier and runs the classifier training."""
        if epochs is None:
            epochs = self.default_training_epochs

        bert_config = bert_configs.BertConfig(
            0,
            initializer_range=self.initializer_range,
            hidden_dropout_prob=self.dropout_rate)
        warmup_steps = int(epochs * steps_per_epoch * 0.1)
        initial_lr = self.learning_rate

        def _get_classifier_model():
            """Gets a classifier model."""
            classifier_model, core_model = (bert_models.classifier_model(
                bert_config,
                num_classes,
                self.seq_len,
                hub_module_url=self.uri))
            classifier_model.optimizer = optimization.create_optimizer(
                initial_lr, steps_per_epoch * epochs, warmup_steps)
            return classifier_model, core_model

        # During distributed training, loss used for gradient computation is
        # summed over from all replicas. When Keras compile/fit() API is used,
        # the fit() API internally normalizes the loss by dividing the loss by
        # the number of replicas used for computation. However, when custom
        # training loop is used this is not done automatically and should be
        # done manually by the end user.
        loss_multiplier = 1.0
        if self.scale_loss:
            loss_multiplier = 1.0 / self.strategy.num_replicas_in_sync

        loss_fn = self.get_classification_loss_fn(num_classes,
                                                  loss_factor=loss_multiplier)

        # Defines evaluation metrics function, which will create metrics in the
        # correct device and strategy scope.
        def metric_fn():
            return tf.keras.metrics.SparseCategoricalAccuracy('test_accuracy',
                                                              dtype=tf.float32)

        # Use user-defined loop to start training.
        tf.compat.v1.logging.info(
            'Training using customized training loop TF 2.0 '
            'with distribution strategy.')
        bert_model = model_training_utils.run_customized_training_loop(
            strategy=self.strategy,
            model_fn=_get_classifier_model,
            loss_fn=loss_fn,
            model_dir=self.model_dir,
            steps_per_epoch=steps_per_epoch,
            steps_per_loop=self.steps_per_loop,
            epochs=epochs,
            train_input_fn=train_input_fn,
            eval_input_fn=validation_input_fn,
            eval_steps=validation_steps,
            init_checkpoint=None,
            metric_fn=metric_fn,
            custom_callbacks=None,
            run_eagerly=False)

        # Used in evaluation.
        with self.strategy.scope():
            bert_model, _ = _get_classifier_model()
            checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
            checkpoint = tf.train.Checkpoint(model=bert_model)
            checkpoint.restore(checkpoint_path).expect_partial()
            bert_model.compile(loss=loss_fn, metrics=[metric_fn()])
        return bert_model