def __init__(self, network, bert_config, initializer='glorot_uniform', seq_length=128, use_pointing=True, is_training=True): """Creates Felix Tagger. Setting up all of the layers needed for call. Args: network: An encoder network, which should output a sequence of hidden states. bert_config: A config file which in addition to the BertConfig values also includes: num_classes, hidden_dropout_prob, and query_transformer. initializer: The initializer (if any) to use in the classification networks. Defaults to a Glorot uniform initializer. seq_length: Maximum sequence length. use_pointing: Whether a pointing network is used. is_training: The model is being trained. """ super(FelixTagger, self).__init__() self._network = network self._seq_length = seq_length self._bert_config = bert_config self._use_pointing = use_pointing self._is_training = is_training self._tag_logits_layer = tf.keras.layers.Dense( self._bert_config.num_classes) if not self._use_pointing: return # An arbitrary heuristic (sqrt vocab size) for the tag embedding dimension. self._tag_embedding_layer = tf.keras.layers.Embedding( self._bert_config.num_classes, int(math.ceil(math.sqrt(self._bert_config.num_classes))), input_length=seq_length) self._position_embedding_layer = layers.PositionEmbedding( max_length=seq_length) self._edit_tagged_sequence_output_layer = tf.keras.layers.Dense( self._bert_config.hidden_size, activation=activations.gelu) if self._bert_config.query_transformer: self._self_attention_mask_layer = layers.SelfAttentionMask() self._transformer_query_layer = layers.TransformerEncoderBlock( num_attention_heads=self._bert_config.num_attention_heads, inner_dim=self._bert_config.intermediate_size, inner_activation=activations.gelu, output_dropout=self._bert_config.hidden_dropout_prob, attention_dropout=self._bert_config.hidden_dropout_prob, output_range=seq_length, ) self._query_embeddings_layer = tf.keras.layers.Dense( self._bert_config.query_size) self._key_embeddings_layer = tf.keras.layers.Dense( self._bert_config.query_size)
def __init__( self, vocab_size, hidden_size=768, num_layers=12, num_attention_heads=12, max_sequence_length=512, type_vocab_size=16, inner_dim=3072, inner_activation=lambda x: tf.keras.activations.gelu( x, approximate=True), output_dropout=0.1, attention_dropout=0.1, initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02), output_range=None, embedding_width=None, embedding_layer=None, **kwargs): activation = tf.keras.activations.get(inner_activation) initializer = tf.keras.initializers.get(initializer) word_ids = tf.keras.layers.Input(shape=(None, ), dtype=tf.int32, name='input_word_ids') mask = tf.keras.layers.Input(shape=(None, ), dtype=tf.int32, name='input_mask') type_ids = tf.keras.layers.Input(shape=(None, ), dtype=tf.int32, name='input_type_ids') if embedding_width is None: embedding_width = hidden_size if embedding_layer is None: embedding_layer_inst = layers.OnDeviceEmbedding( vocab_size=vocab_size, embedding_width=embedding_width, initializer=initializer, name='word_embeddings') else: embedding_layer_inst = embedding_layer word_embeddings = embedding_layer_inst(word_ids) # Always uses dynamic slicing for simplicity. position_embedding_layer = layers.PositionEmbedding( initializer=initializer, max_length=max_sequence_length, name='position_embedding') position_embeddings = position_embedding_layer(word_embeddings) type_embedding_layer = layers.OnDeviceEmbedding( vocab_size=type_vocab_size, embedding_width=embedding_width, initializer=initializer, use_one_hot=True, name='type_embeddings') type_embeddings = type_embedding_layer(type_ids) embeddings = tf.keras.layers.Add()( [word_embeddings, position_embeddings, type_embeddings]) embedding_norm_layer = tf.keras.layers.LayerNormalization( name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32) embeddings = embedding_norm_layer(embeddings) embeddings = (tf.keras.layers.Dropout(rate=output_dropout)(embeddings)) # We project the 'embedding' output to 'hidden_size' if it is not already # 'hidden_size'. if embedding_width != hidden_size: embedding_projection = tf.keras.layers.experimental.EinsumDense( '...x,xy->...y', output_shape=hidden_size, bias_axes='y', kernel_initializer=initializer, name='embedding_projection') embeddings = embedding_projection(embeddings) else: embedding_projection = None transformer_layers = [] data = embeddings attention_mask = layers.SelfAttentionMask()(data, mask) encoder_outputs = [] for i in range(num_layers): if i == num_layers - 1 and output_range is not None: transformer_output_range = output_range else: transformer_output_range = None layer = layers.TransformerEncoderBlock( num_attention_heads=num_attention_heads, inner_dim=inner_dim, inner_activation=inner_activation, output_dropout=output_dropout, attention_dropout=attention_dropout, output_range=transformer_output_range, kernel_initializer=initializer, name='transformer/layer_%d' % i) transformer_layers.append(layer) data = layer([data, attention_mask]) encoder_outputs.append(data) last_encoder_output = encoder_outputs[-1] # Applying a tf.slice op (through subscript notation) to a Keras tensor # like this will create a SliceOpLambda layer. This is better than a Lambda # layer with Python code, because that is fundamentally less portable. first_token_tensor = last_encoder_output[:, 0, :] pooler_layer = tf.keras.layers.Dense(units=hidden_size, activation='tanh', kernel_initializer=initializer, name='pooler_transform') cls_output = pooler_layer(first_token_tensor) outputs = dict( sequence_output=encoder_outputs[-1], pooled_output=cls_output, encoder_outputs=encoder_outputs, ) # Once we've created the network using the Functional API, we call # super().__init__ as though we were invoking the Functional API Model # constructor, resulting in this object having all the properties of a model # created using the Functional API. Once super().__init__ is called, we # can assign attributes to `self` - note that all `self` assignments are # below this line. super(BertEncoder, self).__init__(inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs) config_dict = { 'vocab_size': vocab_size, 'hidden_size': hidden_size, 'num_layers': num_layers, 'num_attention_heads': num_attention_heads, 'max_sequence_length': max_sequence_length, 'type_vocab_size': type_vocab_size, 'inner_dim': inner_dim, 'inner_activation': tf.keras.activations.serialize(activation), 'output_dropout': output_dropout, 'attention_dropout': attention_dropout, 'initializer': tf.keras.initializers.serialize(initializer), 'output_range': output_range, 'embedding_width': embedding_width, 'embedding_layer': embedding_layer, } # We are storing the config dict as a namedtuple here to ensure checkpoint # compatibility with an earlier version of this model which did not track # the config dict attribute. TF does not track immutable attrs which # do not contain Trackables, so by creating a config namedtuple instead of # a dict we avoid tracking it. config_cls = collections.namedtuple('Config', config_dict.keys()) self._config = config_cls(**config_dict) self._pooler_layer = pooler_layer self._transformer_layers = transformer_layers self._embedding_norm_layer = embedding_norm_layer self._embedding_layer = embedding_layer_inst self._position_embedding_layer = position_embedding_layer self._type_embedding_layer = type_embedding_layer if embedding_projection is not None: self._embedding_projection = embedding_projection
def __init__( self, vocab_size, hidden_size=768, num_layers=12, num_attention_heads=12, max_sequence_length=512, type_vocab_size=16, inner_dim=3072, inner_activation=lambda x: tf.keras.activations.gelu( x, approximate=True), output_dropout=0.1, attention_dropout=0.1, initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02), output_range=None, embedding_width=None, **kwargs): activation = tf.keras.activations.get(inner_activation) initializer = tf.keras.initializers.get(initializer) self._self_setattr_tracking = False self._config_dict = { 'vocab_size': vocab_size, 'hidden_size': hidden_size, 'num_layers': num_layers, 'num_attention_heads': num_attention_heads, 'max_sequence_length': max_sequence_length, 'type_vocab_size': type_vocab_size, 'inner_dim': inner_dim, 'inner_activation': tf.keras.activations.serialize(activation), 'output_dropout': output_dropout, 'attention_dropout': attention_dropout, 'initializer': tf.keras.initializers.serialize(initializer), 'output_range': output_range, 'embedding_width': embedding_width, } word_ids = tf.keras.layers.Input(shape=(None, ), dtype=tf.int32, name='input_word_ids') mask = tf.keras.layers.Input(shape=(None, ), dtype=tf.int32, name='input_mask') type_ids = tf.keras.layers.Input(shape=(None, ), dtype=tf.int32, name='input_type_ids') if embedding_width is None: embedding_width = hidden_size self._embedding_layer = self._build_embedding_layer() word_embeddings = self._embedding_layer(word_ids) # Always uses dynamic slicing for simplicity. self._position_embedding_layer = layers.PositionEmbedding( initializer=initializer, max_length=max_sequence_length, name='position_embedding') position_embeddings = self._position_embedding_layer(word_embeddings) self._type_embedding_layer = layers.OnDeviceEmbedding( vocab_size=type_vocab_size, embedding_width=embedding_width, initializer=initializer, use_one_hot=True, name='type_embeddings') type_embeddings = self._type_embedding_layer(type_ids) embeddings = tf.keras.layers.Add()( [word_embeddings, position_embeddings, type_embeddings]) self._embedding_norm_layer = tf.keras.layers.LayerNormalization( name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32) embeddings = self._embedding_norm_layer(embeddings) embeddings = (tf.keras.layers.Dropout(rate=output_dropout)(embeddings)) # We project the 'embedding' output to 'hidden_size' if it is not already # 'hidden_size'. if embedding_width != hidden_size: self._embedding_projection = tf.keras.layers.experimental.EinsumDense( '...x,xy->...y', output_shape=hidden_size, bias_axes='y', kernel_initializer=initializer, name='embedding_projection') embeddings = self._embedding_projection(embeddings) self._transformer_layers = [] data = embeddings attention_mask = layers.SelfAttentionMask()(data, mask) encoder_outputs = [] for i in range(num_layers): if i == num_layers - 1 and output_range is not None: transformer_output_range = output_range else: transformer_output_range = None layer = layers.TransformerEncoderBlock( num_attention_heads=num_attention_heads, inner_dim=inner_dim, inner_activation=inner_activation, output_dropout=output_dropout, attention_dropout=attention_dropout, output_range=transformer_output_range, kernel_initializer=initializer, name='transformer/layer_%d' % i) self._transformer_layers.append(layer) data = layer([data, attention_mask]) encoder_outputs.append(data) last_enocder_output = encoder_outputs[-1] # Applying a tf.slice op (through subscript notation) to a Keras tensor # like this will create a SliceOpLambda layer. This is better than a Lambda # layer with Python code, because that is fundamentally less portable. first_token_tensor = last_enocder_output[:, 0, :] self._pooler_layer = tf.keras.layers.Dense( units=hidden_size, activation='tanh', kernel_initializer=initializer, name='pooler_transform') cls_output = self._pooler_layer(first_token_tensor) outputs = dict( sequence_output=encoder_outputs[-1], pooled_output=cls_output, encoder_outputs=encoder_outputs, ) super(BertEncoder, self).__init__(inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs)