示例#1
0
    def test_masked_attention(self):
        """Test with a mask tensor."""
        test_layer = attention.Attention(num_heads=2, head_size=2)
        # Create a 3-dimensional input (the first dimension is implicit).
        from_tensor = tf.keras.Input(shape=(4, 8))
        to_tensor = tf.keras.Input(shape=(2, 8))
        mask_tensor = tf.keras.Input(shape=(4, 2))
        output = test_layer([from_tensor, to_tensor, mask_tensor])

        # Create a model containing the test layer.
        model = tf.keras.Model([from_tensor, to_tensor, mask_tensor], output)

        # Generate data for the input (non-mask) tensors.
        from_data = 10 * np.random.random_sample((3, 4, 8))
        to_data = 10 * np.random.random_sample((3, 2, 8))

        # Invoke the data with a random set of mask data. This should mask at least
        # one element.
        mask_data = np.random.randint(2, size=(3, 4, 2))
        masked_output_data = model.predict([from_data, to_data, mask_data])

        # Invoke the same data, but with a null mask (where no elements are masked).
        null_mask_data = np.ones((3, 4, 2))
        unmasked_output_data = model.predict(
            [from_data, to_data, null_mask_data])

        # Because one data is masked and one is not, the outputs should not be the
        # same.
        self.assertNotAllClose(masked_output_data, unmasked_output_data)
示例#2
0
 def test_non_masked_self_attention(self):
     """Test with one input (self-attenntion) and no mask tensor."""
     test_layer = attention.Attention(num_heads=12, head_size=64)
     # Create a 3-dimensional input (the first dimension is implicit).
     from_tensor = tf.keras.Input(shape=(40, 80))
     output = test_layer([from_tensor, from_tensor])
     self.assertEqual(output.shape.as_list(), [None, 40, 12, 64])
示例#3
0
 def test_initializer(self):
     """Test with a specified initializer."""
     test_layer = attention.Attention(
         num_heads=12,
         head_size=64,
         kernel_initializer=tf.keras.initializers.TruncatedNormal(
             stddev=0.02))
     # Create a 3-dimensional input (the first dimension is implicit).
     from_tensor = tf.keras.Input(shape=(40, 80))
     output = test_layer([from_tensor, from_tensor])
     self.assertEqual(output.shape.as_list(), [None, 40, 12, 64])
示例#4
0
    def build(self, input_shape):
        input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape
        input_tensor_shape = tf.TensorShape(input_tensor)
        if len(input_tensor_shape) != 3:
            raise ValueError(
                "TransformerLayer expects a three-dimensional input of "
                "shape [batch, sequence, width].")
        batch_size, sequence_length, hidden_size = input_tensor_shape

        if len(input_shape) == 2:
            mask_tensor_shape = tf.TensorShape(input_shape[1])
            expected_mask_tensor_shape = tf.TensorShape(
                [batch_size, sequence_length, sequence_length])
            if not expected_mask_tensor_shape.is_compatible_with(
                    mask_tensor_shape):
                raise ValueError(
                    "When passing a mask tensor to TransformerLayer, the "
                    "mask tensor must be of shape [batch, "
                    "sequence_length, sequence_length] (here %s). Got a "
                    "mask tensor of shape %s." %
                    (expected_mask_tensor_shape, mask_tensor_shape))
        if hidden_size % self._num_heads != 0:
            raise ValueError(
                "The input size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (hidden_size, self._num_heads))
        self._attention_head_size = int(hidden_size // self._num_heads)

        self._attention_layer = attention.Attention(
            num_heads=self._num_heads,
            head_size=self._attention_head_size,
            dropout_rate=self._attention_dropout_rate,
            kernel_initializer=self._kernel_initializer,
            bias_initializer=self._bias_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            activity_regularizer=self._activity_regularizer,
            kernel_constraint=self._kernel_constraint,
            bias_constraint=self._bias_constraint,
            name="self_attention")
        self._attention_output_dense = dense_einsum.DenseEinsum(
            output_shape=hidden_size,
            num_summed_dimensions=2,
            kernel_initializer=self._kernel_initializer,
            bias_initializer=self._bias_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            activity_regularizer=self._activity_regularizer,
            kernel_constraint=self._kernel_constraint,
            bias_constraint=self._bias_constraint,
            name="self_attention_output")
        self._attention_dropout = tf.keras.layers.Dropout(
            rate=self._dropout_rate)
        # Use float32 in layernorm for numeric stability.
        # It is probably safe in mixed_float16, but we haven't validated this yet.
        self._attention_layer_norm = (tf.keras.layers.LayerNormalization(
            name="self_attention_layer_norm",
            axis=-1,
            epsilon=1e-12,
            dtype=tf.float32))
        self._intermediate_dense = dense_einsum.DenseEinsum(
            output_shape=self._intermediate_size,
            activation=None,
            kernel_initializer=self._kernel_initializer,
            bias_initializer=self._bias_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            activity_regularizer=self._activity_regularizer,
            kernel_constraint=self._kernel_constraint,
            bias_constraint=self._bias_constraint,
            name="intermediate")
        # Use float32 in intermediate gelu activation for numeric stability.
        # TODO(b/149117297): investigate gelu numeric stability.
        self._intermediate_activation_layer = tf.keras.layers.Activation(
            self._intermediate_activation, dtype=tf.float32)
        self._output_dense = dense_einsum.DenseEinsum(
            output_shape=hidden_size,
            kernel_initializer=self._kernel_initializer,
            bias_initializer=self._bias_initializer,
            kernel_regularizer=self._kernel_regularizer,
            bias_regularizer=self._bias_regularizer,
            activity_regularizer=self._activity_regularizer,
            kernel_constraint=self._kernel_constraint,
            bias_constraint=self._bias_constraint,
            name="output")
        self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
        # Use float32 in layernorm for numeric stability.
        self._output_layer_norm = tf.keras.layers.LayerNormalization(
            name="output_layer_norm", axis=-1, epsilon=1e-12, dtype=tf.float32)

        super(Transformer, self).build(input_shape)