def create_layer(self, vocab_size, hidden_size, output='predictions', xformer_stack=None): # First, create a transformer stack that we can use to get the LM's # vocabulary weight. if xformer_stack is None: xformer_stack = bert_encoder.BertEncoder( vocab_size=vocab_size, num_layers=1, hidden_size=hidden_size, num_attention_heads=4, ) # Create a maskedLM from the transformer stack. test_layer = masked_lm.MaskedLM( embedding_table=xformer_stack.get_embedding_table(), output=output) return test_layer
# vocabulary weight. if xformer_stack is None: xformer_stack = transformer_encoder.TransformerEncoder( vocab_size=vocab_size, num_layers=1, <<<<<<< HEAD sequence_length=sequence_length, ======= >>>>>>> a811a3b7e640722318ad868c99feddf3f3063e36 hidden_size=hidden_size, num_attention_heads=4, ) # Create a maskedLM from the transformer stack. test_layer = masked_lm.MaskedLM( embedding_table=xformer_stack.get_embedding_table(), output=output) return test_layer def test_layer_creation(self): vocab_size = 100 sequence_length = 32 hidden_size = 64 num_predictions = 21 test_layer = self.create_layer( vocab_size=vocab_size, <<<<<<< HEAD sequence_length=sequence_length, ======= >>>>>>> a811a3b7e640722318ad868c99feddf3f3063e36 hidden_size=hidden_size)