示例#1
0
    def test_bert_trainer(self):
        """Validate that the Keras object can be created."""
        # Build a transformer network to use within the BERT trainer.
        vocab_size = 100
        sequence_length = 512
        test_network = networks.TransformerEncoder(
            vocab_size=vocab_size,
            num_layers=2,
            sequence_length=sequence_length)

        # Create a BERT trainer with the created network.
        num_classes = 3
        bert_trainer_model = bert_token_classifier.BertTokenClassifier(
            test_network, num_classes=num_classes)

        # Create a set of 2-dimensional inputs (the first dimension is implicit).
        word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)
        type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32)

        # Invoke the trainer model on the inputs. This causes the layer to be built.
        sequence_outs = bert_trainer_model([word_ids, mask, type_ids])

        # Validate that the outputs are of the expected shape.
        expected_classification_shape = [None, sequence_length, num_classes]
        self.assertAllEqual(expected_classification_shape,
                            sequence_outs.shape.as_list())
示例#2
0
    def test_serialize_deserialize(self):
        """Validate that the BERT trainer can be serialized and deserialized."""
        # Build a transformer network to use within the BERT trainer. (Here, we use
        # a short sequence_length for convenience.)
        test_network = networks.TransformerEncoder(vocab_size=100,
                                                   num_layers=2,
                                                   sequence_length=5)

        # Create a BERT trainer with the created network. (Note that all the args
        # are different, so we can catch any serialization mismatches.)
        bert_trainer_model = bert_token_classifier.BertTokenClassifier(
            test_network,
            num_classes=4,
            initializer='zeros',
            output='predictions')

        # Create another BERT trainer via serialization and deserialization.
        config = bert_trainer_model.get_config()
        new_bert_trainer_model = (
            bert_token_classifier.BertTokenClassifier.from_config(config))

        # Validate that the config can be forced to JSON.
        _ = new_bert_trainer_model.to_json()

        # If the serialization was successful, the new config should match the old.
        self.assertAllEqual(bert_trainer_model.get_config(),
                            new_bert_trainer_model.get_config())
  def test_bert_trainer_tensor_call(self):
    """Validate that the Keras object can be invoked."""
    # Build a transformer network to use within the BERT trainer. (Here, we use
    # a short sequence_length for convenience.)
    test_network = networks.BertEncoder(
        vocab_size=100, num_layers=2, max_sequence_length=2)

    # Create a BERT trainer with the created network.
    bert_trainer_model = bert_token_classifier.BertTokenClassifier(
        test_network, num_classes=2)

    # Create a set of 2-dimensional data tensors to feed into the model.
    word_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)
    mask = tf.constant([[1, 1], [1, 0]], dtype=tf.int32)
    type_ids = tf.constant([[1, 1], [2, 2]], dtype=tf.int32)

    # Invoke the trainer model on the tensors. In Eager mode, this does the
    # actual calculation. (We can't validate the outputs, since the network is
    # too complex: this simply ensures we're not hitting runtime errors.)
    _ = bert_trainer_model([word_ids, mask, type_ids])