def _lcs_match(max_dist):
            """LCS match."""
            f.fill(0)
            g.clear()

            ### longest common sub sequence
            # f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j))
            for i in range(N):

                # note(zhiliny):
                # unlike standard LCS, this is specifically optimized for the setting
                # because the mismatch between sentence pieces and original text will
                # be small
                for j in range(i - max_dist, i + max_dist):
                    if j >= M or j < 0:
                        continue

                    if i > 0:
                        g[(i, j)] = 0
                        f[i, j] = f[i - 1, j]

                    if j > 0 and f[i, j - 1] > f[i, j]:
                        g[(i, j)] = 1
                        f[i, j] = f[i, j - 1]

                    f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0
                    if (preprocess_utils.preprocess_text(
                            paragraph_text[i], lower=uncased,
                            remove_space=False) == tok_cat_text[j]
                            and f_prev + 1 > f[i, j]):
                        g[(i, j)] = 2
                        f[i, j] = f_prev + 1
示例#2
0
 def tokenize_fn(text):
     text = preprocess_utils.preprocess_text(text, lower=FLAGS.uncased)
     return preprocess_utils.encode_ids(sp, text)
def convert_examples_to_features(examples, sp_model, max_seq_length,
                                 doc_stride, max_query_length, is_training,
                                 output_fn, uncased):
    """Loads a data file into a list of `InputBatch`s."""

    cnt_pos, cnt_neg = 0, 0
    unique_id = 1000000000
    max_N, max_M = 1024, 1024
    f = np.zeros((max_N, max_M), dtype=np.float32)

    for (example_index, example) in enumerate(examples):
        # pylint: disable=logging-format-interpolation
        if example_index % 100 == 0:
            logging.info("Converting {}/{} pos {} neg {}".format(
                example_index, len(examples), cnt_pos, cnt_neg))

        query_tokens = preprocess_utils.encode_ids(
            sp_model,
            preprocess_utils.preprocess_text(example.question_text,
                                             lower=uncased))

        if len(query_tokens) > max_query_length:
            query_tokens = query_tokens[0:max_query_length]

        paragraph_text = example.paragraph_text
        para_tokens = preprocess_utils.encode_pieces(
            sp_model,
            preprocess_utils.preprocess_text(example.paragraph_text,
                                             lower=uncased))

        chartok_to_tok_index = []
        tok_start_to_chartok_index = []
        tok_end_to_chartok_index = []
        char_cnt = 0
        for i, token in enumerate(para_tokens):
            chartok_to_tok_index.extend([i] * len(token))
            tok_start_to_chartok_index.append(char_cnt)
            char_cnt += len(token)
            tok_end_to_chartok_index.append(char_cnt - 1)

        tok_cat_text = "".join(para_tokens).replace(SPIECE_UNDERLINE, " ")
        N, M = len(paragraph_text), len(tok_cat_text)

        if N > max_N or M > max_M:
            max_N = max(N, max_N)
            max_M = max(M, max_M)
            f = np.zeros((max_N, max_M), dtype=np.float32)
            gc.collect()

        g = {}

        # pylint: disable=cell-var-from-loop
        def _lcs_match(max_dist):
            """LCS match."""
            f.fill(0)
            g.clear()

            ### longest common sub sequence
            # f[i, j] = max(f[i - 1, j], f[i, j - 1], f[i - 1, j - 1] + match(i, j))
            for i in range(N):

                # note(zhiliny):
                # unlike standard LCS, this is specifically optimized for the setting
                # because the mismatch between sentence pieces and original text will
                # be small
                for j in range(i - max_dist, i + max_dist):
                    if j >= M or j < 0:
                        continue

                    if i > 0:
                        g[(i, j)] = 0
                        f[i, j] = f[i - 1, j]

                    if j > 0 and f[i, j - 1] > f[i, j]:
                        g[(i, j)] = 1
                        f[i, j] = f[i, j - 1]

                    f_prev = f[i - 1, j - 1] if i > 0 and j > 0 else 0
                    if (preprocess_utils.preprocess_text(
                            paragraph_text[i], lower=uncased,
                            remove_space=False) == tok_cat_text[j]
                            and f_prev + 1 > f[i, j]):
                        g[(i, j)] = 2
                        f[i, j] = f_prev + 1

        max_dist = abs(N - M) + 5
        for _ in range(2):
            _lcs_match(max_dist)
            if f[N - 1, M - 1] > 0.8 * N:
                break
            max_dist *= 2

        orig_to_chartok_index = [None] * N
        chartok_to_orig_index = [None] * M
        i, j = N - 1, M - 1
        while i >= 0 and j >= 0:
            if (i, j) not in g:
                break
            if g[(i, j)] == 2:
                orig_to_chartok_index[i] = j
                chartok_to_orig_index[j] = i
                i, j = i - 1, j - 1
            elif g[(i, j)] == 1:
                j = j - 1
            else:
                i = i - 1

        if all(v is None
               for v in orig_to_chartok_index) or f[N - 1, M - 1] < 0.8 * N:
            print("MISMATCH DETECTED!")
            continue

        tok_start_to_orig_index = []
        tok_end_to_orig_index = []
        for i in range(len(para_tokens)):
            start_chartok_pos = tok_start_to_chartok_index[i]
            end_chartok_pos = tok_end_to_chartok_index[i]
            start_orig_pos = _convert_index(chartok_to_orig_index,
                                            start_chartok_pos,
                                            N,
                                            is_start=True)
            end_orig_pos = _convert_index(chartok_to_orig_index,
                                          end_chartok_pos,
                                          N,
                                          is_start=False)

            tok_start_to_orig_index.append(start_orig_pos)
            tok_end_to_orig_index.append(end_orig_pos)

        if not is_training:
            tok_start_position = tok_end_position = None

        if is_training and example.is_impossible:
            tok_start_position = -1
            tok_end_position = -1

        if is_training and not example.is_impossible:
            start_position = example.start_position
            end_position = start_position + len(example.orig_answer_text) - 1

            start_chartok_pos = _convert_index(orig_to_chartok_index,
                                               start_position,
                                               is_start=True)
            tok_start_position = chartok_to_tok_index[start_chartok_pos]

            end_chartok_pos = _convert_index(orig_to_chartok_index,
                                             end_position,
                                             is_start=False)
            tok_end_position = chartok_to_tok_index[end_chartok_pos]
            assert tok_start_position <= tok_end_position

        def _piece_to_id(x):
            if six.PY2 and isinstance(x, unicode):
                x = x.encode("utf-8")
            return sp_model.PieceToId(x)

        all_doc_tokens = list(map(_piece_to_id, para_tokens))

        # The -3 accounts for [CLS], [SEP] and [SEP]
        max_tokens_for_doc = max_seq_length - len(query_tokens) - 3

        # We can have documents that are longer than the maximum sequence length.
        # To deal with this we do a sliding window approach, where we take chunks
        # of the up to our max length with a stride of `doc_stride`.
        _DocSpan = collections.namedtuple(  # pylint: disable=invalid-name
            "DocSpan", ["start", "length"])
        doc_spans = []
        start_offset = 0
        while start_offset < len(all_doc_tokens):
            length = len(all_doc_tokens) - start_offset
            if length > max_tokens_for_doc:
                length = max_tokens_for_doc
            doc_spans.append(_DocSpan(start=start_offset, length=length))
            if start_offset + length == len(all_doc_tokens):
                break
            start_offset += min(length, doc_stride)

        for (doc_span_index, doc_span) in enumerate(doc_spans):
            tokens = []
            token_is_max_context = {}
            segment_ids = []
            p_mask = []

            cur_tok_start_to_orig_index = []
            cur_tok_end_to_orig_index = []

            for i in range(doc_span.length):
                split_token_index = doc_span.start + i

                cur_tok_start_to_orig_index.append(
                    tok_start_to_orig_index[split_token_index])
                cur_tok_end_to_orig_index.append(
                    tok_end_to_orig_index[split_token_index])

                is_max_context = _check_is_max_context(doc_spans,
                                                       doc_span_index,
                                                       split_token_index)
                token_is_max_context[len(tokens)] = is_max_context
                tokens.append(all_doc_tokens[split_token_index])
                segment_ids.append(data_utils.SEG_ID_P)
                p_mask.append(0)

            paragraph_len = len(tokens)

            tokens.append(data_utils.SEP_ID)
            segment_ids.append(data_utils.SEG_ID_P)
            p_mask.append(1)

            # note(zhiliny): we put P before Q
            # because during pretraining, B is always shorter than A
            for token in query_tokens:
                tokens.append(token)
                segment_ids.append(data_utils.SEG_ID_Q)
                p_mask.append(1)
            tokens.append(data_utils.SEP_ID)
            segment_ids.append(data_utils.SEG_ID_Q)
            p_mask.append(1)

            cls_index = len(segment_ids)
            tokens.append(data_utils.CLS_ID)
            segment_ids.append(data_utils.SEG_ID_CLS)
            p_mask.append(0)

            input_ids = tokens

            # The mask has 0 for real tokens and 1 for padding tokens. Only real
            # tokens are attended to.
            input_mask = [0] * len(input_ids)

            # Zero-pad up to the sequence length.
            while len(input_ids) < max_seq_length:
                input_ids.append(0)
                input_mask.append(1)
                segment_ids.append(data_utils.SEG_ID_PAD)
                p_mask.append(1)

            assert len(input_ids) == max_seq_length
            assert len(input_mask) == max_seq_length
            assert len(segment_ids) == max_seq_length
            assert len(p_mask) == max_seq_length

            span_is_impossible = example.is_impossible
            start_position = None
            end_position = None
            if is_training and not span_is_impossible:
                # For training, if our document chunk does not contain an annotation
                # we throw it out, since there is nothing to predict.
                doc_start = doc_span.start
                doc_end = doc_span.start + doc_span.length - 1
                out_of_span = False
                if not (tok_start_position >= doc_start
                        and tok_end_position <= doc_end):
                    out_of_span = True
                if out_of_span:
                    # continue
                    start_position = 0
                    end_position = 0
                    span_is_impossible = True
                else:
                    # note: we put P before Q, so doc_offset should be zero.
                    # doc_offset = len(query_tokens) + 2
                    doc_offset = 0
                    start_position = tok_start_position - doc_start + doc_offset
                    end_position = tok_end_position - doc_start + doc_offset

            if is_training and span_is_impossible:
                start_position = cls_index
                end_position = cls_index

            if example_index < 20:
                logging.info("*** Example ***")
                logging.info("unique_id: %s", unique_id)
                logging.info("example_index: %s", example_index)
                logging.info("doc_span_index: %s", doc_span_index)
                logging.info(
                    "tok_start_to_orig_index: %s",
                    " ".join([str(x) for x in cur_tok_start_to_orig_index]))
                logging.info(
                    "tok_end_to_orig_index: %s",
                    " ".join([str(x) for x in cur_tok_end_to_orig_index]))
                logging.info(
                    "token_is_max_context: %s", " ".join([
                        "%d:%s" % (x, y)
                        for (x, y) in six.iteritems(token_is_max_context)
                    ]))
                logging.info("input_ids: %s",
                             " ".join([str(x) for x in input_ids]))
                logging.info("input_mask: %s",
                             " ".join([str(x) for x in input_mask]))
                logging.info("segment_ids: %s",
                             " ".join([str(x) for x in segment_ids]))

                if is_training and span_is_impossible:
                    logging.info("impossible example span")

                if is_training and not span_is_impossible:
                    pieces = [
                        sp_model.IdToPiece(token)
                        for token in tokens[start_position:(end_position + 1)]
                    ]
                    answer_text = sp_model.DecodePieces(pieces)
                    logging.info("start_position: %d", start_position)
                    logging.info("end_position: %d", end_position)
                    logging.info("answer: %s",
                                 preprocess_utils.printable_text(answer_text))

                    # With multi processing, the example_index is actually the index
                    # within the current process therefore we use example_index=None to
                    # avoid being used in the future. # The current code does not use
                    # example_index of training data.
            if is_training:
                feat_example_index = None
            else:
                feat_example_index = example_index

            feature = InputFeatures(
                unique_id=unique_id,
                example_index=feat_example_index,
                doc_span_index=doc_span_index,
                tok_start_to_orig_index=cur_tok_start_to_orig_index,
                tok_end_to_orig_index=cur_tok_end_to_orig_index,
                token_is_max_context=token_is_max_context,
                input_ids=input_ids,
                input_mask=input_mask,
                p_mask=p_mask,
                segment_ids=segment_ids,
                paragraph_len=paragraph_len,
                cls_index=cls_index,
                start_position=start_position,
                end_position=end_position,
                is_impossible=span_is_impossible)

            # Run callback
            output_fn(feature)

            unique_id += 1
            if span_is_impossible:
                cnt_neg += 1
            else:
                cnt_pos += 1

    logging.info("Total number of instances: %d = pos %d + neg %d",
                 cnt_pos + cnt_neg, cnt_pos, cnt_neg)
示例#4
0
def _create_data(idx, input_paths):
  # Load sentence-piece model
  sp = spm.SentencePieceProcessor()
  sp.Load(FLAGS.sp_path)

  input_shards = []
  total_line_cnt = 0
  for input_path in input_paths:
    input_data, sent_ids = [], []
    sent_id, line_cnt = True, 0
    tf.logging.info("Processing %s", input_path)
    for line in tf.gfile.Open(input_path):
      if line_cnt % 100000 == 0:
        tf.logging.info("Loading line %d", line_cnt)
      line_cnt += 1

      if not line.strip():
        if FLAGS.use_eod:
          sent_id = not sent_id
          cur_sent = [EOD_ID]
        else:
          continue
      else:
        if FLAGS.from_raw_text:
          cur_sent = preprocess_utils.preprocess_text(
              line.strip(), lower=FLAGS.uncased)
          cur_sent = preprocess_utils.encode_ids(sp, cur_sent)
        else:
          cur_sent = list(map(int, line.strip().split()))

      input_data.extend(cur_sent)
      sent_ids.extend([sent_id] * len(cur_sent))
      sent_id = not sent_id

    tf.logging.info("Finish with line %d", line_cnt)
    if line_cnt == 0:
      continue

    input_data = np.array(input_data, dtype=np.int64)
    sent_ids = np.array(sent_ids, dtype=np.bool)

    total_line_cnt += line_cnt
    input_shards.append((input_data, sent_ids))

  tf.logging.info("[Task %d] Total number line: %d", idx, total_line_cnt)

  tfrecord_dir = os.path.join(FLAGS.save_dir, "tfrecords")

  filenames, num_batch = [], 0

  # Randomly shuffle input shards (with a fixed but distinct random seed)
  np.random.seed(100 * FLAGS.task + FLAGS.pass_id)

  perm_indices = np.random.permutation(len(input_shards))
  tf.logging.info("Using perm indices %s for pass %d",
                  perm_indices.tolist(), FLAGS.pass_id)

  input_data_list, sent_ids_list = [], []
  prev_sent_id = None
  for perm_idx in perm_indices:
    input_data, sent_ids = input_shards[perm_idx]
    # make sure the `send_ids[0] == not prev_sent_id`
    if prev_sent_id is not None and sent_ids[0] == prev_sent_id:
      sent_ids = np.logical_not(sent_ids)

    # append to temporary list
    input_data_list.append(input_data)
    sent_ids_list.append(sent_ids)

    # update `prev_sent_id`
    prev_sent_id = sent_ids[-1]

  input_data = np.concatenate(input_data_list)
  sent_ids = np.concatenate(sent_ids_list)

  file_name, cur_num_batch = create_tfrecords(
      save_dir=tfrecord_dir,
      basename="{}-{}-{}".format(FLAGS.split, idx, FLAGS.pass_id),
      data=[input_data, sent_ids],
      bsz_per_host=FLAGS.bsz_per_host,
      seq_len=FLAGS.seq_len,
      bi_data=FLAGS.bi_data,
      sp=sp,
  )

  filenames.append(file_name)
  num_batch += cur_num_batch

  record_info = {
      "filenames": filenames,
      "num_batch": num_batch
  }

  return record_info