def testTaskWithUnstructuredSparsity(self, config_name): config = exp_factory.get_exp_config(config_name) config.task.train_data.global_batch_size = 2 task = img_cls_task.ImageClassificationTask(config.task) model = task.build_model() metrics = task.build_metrics() strategy = tf.distribute.get_strategy() dataset = orbit.utils.make_distributed_dataset(strategy, task.build_inputs, config.task.train_data) iterator = iter(dataset) opt_factory = optimization.OptimizerFactory(config.trainer.optimizer_config) optimizer = opt_factory.build_optimizer(opt_factory.build_learning_rate()) if isinstance(optimizer, optimization.ExponentialMovingAverage ) and not optimizer.has_shadow_copy: optimizer.shadow_copy(model) if config.task.pruning: # This is an auxilary initialization required to prune a model which is # originally done in the train library. actions.PruningAction( export_dir=tempfile.gettempdir(), model=model, optimizer=optimizer) # Check all layers and target weights are successfully pruned. self._validate_model_pruned(model, config_name) logs = task.train_step(next(iterator), model, optimizer, metrics=metrics) self._validate_metrics(logs, metrics) logs = task.validation_step(next(iterator), model, metrics=metrics) self._validate_metrics(logs, metrics)
def testTaskWithStructuredSparsity(self, config_name): test_tfrecord_file = os.path.join(self.get_temp_dir(), 'cls_test.tfrecord') self._create_test_tfrecord(test_tfrecord_file=test_tfrecord_file, num_samples=10, input_image_size=[224, 224]) config = exp_factory.get_exp_config(config_name) config.task.train_data.global_batch_size = 2 config.task.validation_data.input_path = test_tfrecord_file config.task.train_data.input_path = test_tfrecord_file # Add structured sparsity config.task.pruning.sparsity_m_by_n = (2, 4) config.task.pruning.frequency = 1 task = img_cls_task.ImageClassificationTask(config.task) model = task.build_model() metrics = task.build_metrics() strategy = tf.distribute.get_strategy() dataset = orbit.utils.make_distributed_dataset(strategy, task.build_inputs, config.task.train_data) iterator = iter(dataset) opt_factory = optimization.OptimizerFactory( config.trainer.optimizer_config) optimizer = opt_factory.build_optimizer( opt_factory.build_learning_rate()) if isinstance(optimizer, optimization.ExponentialMovingAverage ) and not optimizer.has_shadow_copy: optimizer.shadow_copy(model) # This is an auxiliary initialization required to prune a model which is # originally done in the train library. pruning_actions = actions.PruningAction( export_dir=tempfile.gettempdir(), model=model, optimizer=optimizer) # Check all layers and target weights are successfully pruned. self._validate_model_pruned(model, config_name) logs = task.train_step(next(iterator), model, optimizer, metrics=metrics) self._validate_metrics(logs, metrics) logs = task.validation_step(next(iterator), model, metrics=metrics) self._validate_metrics(logs, metrics) pruning_actions.update_pruning_step.on_epoch_end(batch=None) # Check whether the weights are pruned in 2x4 pattern. self._check_2x4_sparsity(model)