def test_dict_outputs_all_encoder_outputs_network_creation(self): hidden_size = 32 sequence_length = 21 # Create a small BertEncoder for testing. test_network = encoder.TokenDropBertEncoder( vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, dict_outputs=True, token_keep_k=sequence_length, token_allow_list=(), token_deny_list=()) # Create the inputs (note that the first dimension is implicit). word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) all_encoder_outputs = dict_outputs["encoder_outputs"] pooled = dict_outputs["pooled_output"] expected_data_shape = [None, sequence_length, hidden_size] expected_pooled_shape = [None, hidden_size] self.assertLen(all_encoder_outputs, 3) for data in all_encoder_outputs: self.assertAllEqual(expected_data_shape, data.shape.as_list()) self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) # The default output dtype is float32. self.assertAllEqual(tf.float32, all_encoder_outputs[-1].dtype) self.assertAllEqual(tf.float32, pooled.dtype)
def get_encoder(encoder_cfg: TokenDropBertEncoderConfig): """Instantiates 'TokenDropBertEncoder'. Args: encoder_cfg: A 'TokenDropBertEncoderConfig'. Returns: A 'encoder.TokenDropBertEncoder' object. """ return encoder.TokenDropBertEncoder( vocab_size=encoder_cfg.vocab_size, hidden_size=encoder_cfg.hidden_size, num_layers=encoder_cfg.num_layers, num_attention_heads=encoder_cfg.num_attention_heads, intermediate_size=encoder_cfg.intermediate_size, activation=tf_utils.get_activation(encoder_cfg.hidden_activation), dropout_rate=encoder_cfg.dropout_rate, attention_dropout_rate=encoder_cfg.attention_dropout_rate, max_sequence_length=encoder_cfg.max_position_embeddings, type_vocab_size=encoder_cfg.type_vocab_size, initializer=tf.keras.initializers.TruncatedNormal( stddev=encoder_cfg.initializer_range), output_range=encoder_cfg.output_range, embedding_width=encoder_cfg.embedding_size, return_all_encoder_outputs=encoder_cfg.return_all_encoder_outputs, dict_outputs=True, norm_first=encoder_cfg.norm_first, token_loss_init_value=encoder_cfg.token_loss_init_value, token_loss_beta=encoder_cfg.token_loss_beta, token_keep_k=encoder_cfg.token_keep_k, token_allow_list=encoder_cfg.token_allow_list, token_deny_list=encoder_cfg.token_deny_list)
def test_network_creation_with_float16_dtype(self): hidden_size = 32 sequence_length = 21 tf.keras.mixed_precision.set_global_policy("mixed_float16") # Create a small BertEncoder for testing. test_network = encoder.TokenDropBertEncoder(vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=4, token_keep_k=2, token_allow_list=(), token_deny_list=()) # Create the inputs (note that the first dimension is implicit). word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) data = dict_outputs["sequence_output"] pooled = dict_outputs["pooled_output"] expected_data_shape = [None, sequence_length, hidden_size] expected_pooled_shape = [None, hidden_size] self.assertAllEqual(expected_data_shape, data.shape.as_list()) self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) # If float_dtype is set to float16, the data output is float32 (from a layer # norm) and pool output should be float16. self.assertAllEqual(tf.float32, data.dtype) self.assertAllEqual(tf.float16, pooled.dtype)
def test_network_creation(self): hidden_size = 32 sequence_length = 21 # Create a small BertEncoder for testing. test_network = encoder.TokenDropBertEncoder(vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, token_keep_k=2, token_allow_list=(), token_deny_list=()) # Create the inputs (note that the first dimension is implicit). word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) data = dict_outputs["sequence_output"] pooled = dict_outputs["pooled_output"] self.assertIsInstance(test_network.transformer_layers, list) self.assertLen(test_network.transformer_layers, 3) self.assertIsInstance(test_network.pooler_layer, tf.keras.layers.Dense) expected_data_shape = [None, sequence_length, hidden_size] expected_pooled_shape = [None, hidden_size] self.assertAllEqual(expected_data_shape, data.shape.as_list()) self.assertAllEqual(expected_pooled_shape, pooled.shape.as_list()) # The default output dtype is float32. self.assertAllEqual(tf.float32, data.dtype) self.assertAllEqual(tf.float32, pooled.dtype) test_network = encoder.TokenDropBertEncoder(vocab_size=100, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, token_keep_k=2, token_allow_list=(), token_deny_list=()) # Create the inputs (note that the first dimension is implicit). inputs = dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids) _ = test_network(inputs)
def test_keras_model_checkpoint_forward_compatible(self): batch_size = 3 hidden_size = 32 sequence_length = 21 vocab_size = 57 num_types = 7 kwargs = dict(vocab_size=vocab_size, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, output_range=None) word_id_data = np.random.randint(vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint(num_types, size=(batch_size, sequence_length)) data = dict(input_word_ids=word_id_data, input_mask=mask_data, input_type_ids=type_id_data) old_net = bert_encoder.BertEncoderV2(**kwargs) inputs = old_net.inputs outputs = old_net(inputs) old_model = tf.keras.Model(inputs=inputs, outputs=outputs) old_model_outputs = old_model(data) ckpt = tf.train.Checkpoint(net=old_model) path = ckpt.save(self.get_temp_dir()) new_net = encoder.TokenDropBertEncoder(token_keep_k=sequence_length, token_allow_list=(), token_deny_list=(), **kwargs) inputs = new_net.inputs outputs = new_net(inputs) new_model = tf.keras.Model(inputs=inputs, outputs=outputs) new_ckpt = tf.train.Checkpoint(net=new_model) new_ckpt.restore(path) new_model_outputs = new_model(data) self.assertAllEqual(old_model_outputs.keys(), new_model_outputs.keys()) for key in old_model_outputs: self.assertAllClose(old_model_outputs[key], new_model_outputs[key])
def test_checkpoint_forward_compatible(self): batch_size = 3 hidden_size = 32 sequence_length = 21 vocab_size = 57 num_types = 7 kwargs = dict(vocab_size=vocab_size, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, output_range=None) word_id_data = np.random.randint(vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint(num_types, size=(batch_size, sequence_length)) data = dict(input_word_ids=word_id_data, input_mask=mask_data, input_type_ids=type_id_data) old_net = bert_encoder.BertEncoderV2(**kwargs) old_net_outputs = old_net(data) ckpt = tf.train.Checkpoint(net=old_net) path = ckpt.save(self.get_temp_dir()) new_net = encoder.TokenDropBertEncoder(token_keep_k=sequence_length, token_allow_list=(), token_deny_list=(), **kwargs) new_ckpt = tf.train.Checkpoint(net=new_net) status = new_ckpt.restore(path) status.assert_existing_objects_matched() # assert_consumed will fail because the old model has redundant nodes. new_net_outputs = new_net(data) self.assertAllEqual(old_net_outputs.keys(), new_net_outputs.keys()) for key in old_net_outputs: self.assertAllClose(old_net_outputs[key], new_net_outputs[key])
def test_network_invocation(self, output_range, out_seq_len): hidden_size = 32 sequence_length = 21 vocab_size = 57 num_types = 7 # Create a small BertEncoder for testing. test_network = encoder.TokenDropBertEncoder(vocab_size=vocab_size, hidden_size=hidden_size, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, output_range=output_range, token_keep_k=2, token_allow_list=(), token_deny_list=()) # Create the inputs (note that the first dimension is implicit). word_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) mask = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) type_ids = tf.keras.Input(shape=(sequence_length, ), dtype=tf.int32) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) data = dict_outputs["sequence_output"] pooled = dict_outputs["pooled_output"] # Create a model based off of this network: model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled]) # Invoke the model. We can't validate the output data here (the model is too # complex) but this will catch structural runtime errors. batch_size = 3 word_id_data = np.random.randint(vocab_size, size=(batch_size, sequence_length)) mask_data = np.random.randint(2, size=(batch_size, sequence_length)) type_id_data = np.random.randint(num_types, size=(batch_size, sequence_length)) outputs = model.predict([word_id_data, mask_data, type_id_data]) self.assertEqual(outputs[0].shape[1], out_seq_len) # Creates a BertEncoder with max_sequence_length != sequence_length max_sequence_length = 128 test_network = encoder.TokenDropBertEncoder( vocab_size=vocab_size, hidden_size=hidden_size, max_sequence_length=max_sequence_length, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, token_keep_k=2, token_allow_list=(), token_deny_list=()) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) data = dict_outputs["sequence_output"] pooled = dict_outputs["pooled_output"] model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled]) outputs = model.predict([word_id_data, mask_data, type_id_data]) self.assertEqual(outputs[0].shape[1], sequence_length) # Creates a BertEncoder with embedding_width != hidden_size test_network = encoder.TokenDropBertEncoder( vocab_size=vocab_size, hidden_size=hidden_size, max_sequence_length=max_sequence_length, num_attention_heads=2, num_layers=3, type_vocab_size=num_types, embedding_width=16, token_keep_k=2, token_allow_list=(), token_deny_list=()) dict_outputs = test_network( dict(input_word_ids=word_ids, input_mask=mask, input_type_ids=type_ids)) data = dict_outputs["sequence_output"] pooled = dict_outputs["pooled_output"] model = tf.keras.Model([word_ids, mask, type_ids], [data, pooled]) outputs = model.predict([word_id_data, mask_data, type_id_data]) self.assertEqual(outputs[0].shape[-1], hidden_size) self.assertTrue(hasattr(test_network, "_embedding_projection"))