示例#1
0
  def build_network(self, inputs, phase_train=True, nclass=1001):
    try:
      from official.recommendation import neumf_model  # pylint: disable=g-import-not-at-top
    except ImportError as e:
      if 'neumf_model' not in e.message:
        raise
      raise ImportError('To use the experimental NCF model, you must clone the '
                        'repo https://github.com/tensorflow/models and add '
                        'tensorflow/models to the PYTHONPATH.')
    del nclass

    users, items, _ = inputs
    params = {
        'num_users': _NUM_USERS_20M,
        'num_items': _NUM_ITEMS_20M,
        'model_layers': (256, 256, 128, 64),
        'mf_dim': 64,
        'mf_regularization': 0,
        'mlp_reg_layers': (0, 0, 0, 0),
        'use_tpu': False
    }
    if self.data_type == tf.float32:
      keras_model = neumf_model.construct_model(users, items, params)
      logits = keras_model.output
    else:
      assert self.data_type == tf.float16
      tf.keras.backend.set_floatx('float16')
      # We cannot rely on the variable_scope's fp16 custom getter here, because
      # the NCF model uses keras layers, which ignore variable scopes. So we use
      # a variable_creator_scope instead.
      with tf.variable_creator_scope(_fp16_variable_creator):
        keras_model = neumf_model.construct_model(users, items, params)
      logits = tf.cast(keras_model.output, tf.float32)

    return model.BuildNetworkResult(logits=logits, extra_info=None)
示例#2
0
def _get_keras_model(params):
    """Constructs and returns the model."""
    batch_size = params['batch_size']

    user_input = tf.keras.layers.Input(shape=(),
                                       batch_size=batch_size,
                                       name=movielens.USER_COLUMN,
                                       dtype=rconst.USER_DTYPE)

    item_input = tf.keras.layers.Input(shape=(),
                                       batch_size=batch_size,
                                       name=movielens.ITEM_COLUMN,
                                       dtype=rconst.ITEM_DTYPE)

    base_model = neumf_model.construct_model(user_input, item_input, params)
    base_model_output = base_model.output

    zeros = tf.keras.layers.Lambda(lambda x: x * 0)(base_model_output)

    softmax_logits = tf.keras.layers.concatenate([zeros, base_model_output],
                                                 axis=-1)

    keras_model = tf.keras.Model(inputs=[user_input, item_input],
                                 outputs=softmax_logits)

    keras_model.summary()
    return keras_model
示例#3
0
def _get_keras_model(params):
  """Constructs and returns the model."""
  batch_size = params['batch_size']

  user_input = tf.keras.layers.Input(
      shape=(),
      batch_size=batch_size,
      name=movielens.USER_COLUMN,
      dtype=rconst.USER_DTYPE)

  item_input = tf.keras.layers.Input(
      shape=(),
      batch_size=batch_size,
      name=movielens.ITEM_COLUMN,
      dtype=rconst.ITEM_DTYPE)

  base_model = neumf_model.construct_model(user_input, item_input, params)
  base_model_output = base_model.output

  zeros = tf.keras.layers.Lambda(
      lambda x: x * 0)(base_model_output)

  softmax_logits = tf.keras.layers.concatenate(
      [zeros, base_model_output],
      axis=-1)

  keras_model = tf.keras.Model(
      inputs=[user_input, item_input],
      outputs=softmax_logits)

  keras_model.summary()
  return keras_model
示例#4
0
  def build_network(self, inputs, phase_train=True, nclass=1001,
                    data_type=tf.float32):
    try:
      from official.recommendation import neumf_model  # pylint: disable=g-import-not-at-top
    except ImportError as e:
      if 'neumf_model' not in e.message:
        raise
      raise ImportError('To use the experimental NCF model, you must clone the '
                        'repo https://github.com/tensorflow/models and add '
                        'tensorflow/models to the PYTHONPATH.')
    del nclass
    if data_type != tf.float32:
      raise ValueError('NCF model only supports float32 for now.')

    users, items = inputs
    params = {
        'num_users': _NUM_USERS_20M,
        'num_items': _NUM_ITEMS_20M,
        'model_layers': (256, 256, 128, 64),
        'mf_dim': 64,
        'mf_regularization': 0,
        'mlp_reg_layers': (0, 0, 0, 0),
    }
    logits = neumf_model.construct_model(users, items, params)
    return model.BuildNetworkResult(logits=logits, extra_info=None)
示例#5
0
    def build_network(self,
                      images,
                      phase_train=True,
                      nclass=1001,
                      data_type=tf.float32):
        try:
            from official.recommendation import neumf_model  # pylint: disable=g-import-not-at-top
        except ImportError:
            raise ImportError(
                'To use the experimental NCF model, you must clone the '
                'repo https://github.com/tensorflow/models and add '
                'tensorflow/models to the PYTHONPATH.')
        del nclass
        if data_type != tf.float32:
            raise ValueError('NCF model only supports float32 for now.')
        batch_size = int(images.shape[0])

        # Create synthetic users and items. tf_cnn_benchmarks only passes images to
        # this function, which we cannot use in the NCF model. We use functions as
        # initializers for XLA compatibility.
        def users_init_val():
            return tf.random_uniform((batch_size, ),
                                     minval=0,
                                     maxval=_NUM_USERS_20M,
                                     dtype=tf.int32)

        users = tf.Variable(users_init_val,
                            dtype=tf.int32,
                            trainable=False,
                            collections=[tf.GraphKeys.LOCAL_VARIABLES],
                            name='synthetic_users')

        def items_init_val():
            return tf.random_uniform((batch_size, ),
                                     minval=0,
                                     maxval=_NUM_ITEMS_20M,
                                     dtype=tf.int32)

        items = tf.Variable(items_init_val,
                            dtype=tf.int32,
                            trainable=False,
                            collections=[tf.GraphKeys.LOCAL_VARIABLES],
                            name='synthetic_items')

        params = {
            'num_users': _NUM_USERS_20M,
            'num_items': _NUM_ITEMS_20M,
            'model_layers': (256, 256, 128, 64),
            'mf_dim': 64,
            'mf_regularization': 0,
            'mlp_reg_layers': (0, 0, 0, 0),
        }
        logits = neumf_model.construct_model(users, items, params)
        return model.BuildNetworkResult(logits=logits, extra_info=None)
示例#6
0
def _get_keras_model(params):
    """Constructs and returns the model."""
    batch_size = params["batch_size"]

    user_input = tf.keras.layers.Input(shape=(1, ),
                                       name=movielens.USER_COLUMN,
                                       dtype=tf.int32)

    item_input = tf.keras.layers.Input(shape=(1, ),
                                       name=movielens.ITEM_COLUMN,
                                       dtype=tf.int32)

    valid_pt_mask_input = tf.keras.layers.Input(shape=(1, ),
                                                name=rconst.VALID_POINT_MASK,
                                                dtype=tf.bool)

    dup_mask_input = tf.keras.layers.Input(shape=(1, ),
                                           name=rconst.DUPLICATE_MASK,
                                           dtype=tf.int32)

    label_input = tf.keras.layers.Input(shape=(1, ),
                                        name=rconst.TRAIN_LABEL_KEY,
                                        dtype=tf.bool)

    base_model = neumf_model.construct_model(user_input, item_input, params)

    logits = base_model.output

    zeros = tf.keras.layers.Lambda(lambda x: x * 0)(logits)

    softmax_logits = tf.keras.layers.concatenate([zeros, logits], axis=-1)

    # Custom training loop calculates loss and metric as a part of
    # training/evaluation step function.
    if not params["keras_use_ctl"]:
        softmax_logits = MetricLayer(
            params["match_mlperf"])([softmax_logits, dup_mask_input])
        # TODO(b/134744680): Use model.add_loss() instead once the API is well
        # supported.
        softmax_logits = LossLayer(batch_size)(
            [softmax_logits, label_input, valid_pt_mask_input])

    keras_model = tf.keras.Model(inputs={
        movielens.USER_COLUMN: user_input,
        movielens.ITEM_COLUMN: item_input,
        rconst.VALID_POINT_MASK: valid_pt_mask_input,
        rconst.DUPLICATE_MASK: dup_mask_input,
        rconst.TRAIN_LABEL_KEY: label_input
    },
                                 outputs=softmax_logits)

    keras_model.summary()
    return keras_model
示例#7
0
def _get_keras_model(params):
  """Constructs and returns the model."""
  batch_size = params["batch_size"]

  # The input layers are of shape (1, batch_size), to match the size of the
  # input data. The first dimension is needed because the input data are
  # required to be batched to use distribution strategies, and in this case, it
  # is designed to be of batch_size 1 for each replica.
  user_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=movielens.USER_COLUMN,
      dtype=tf.int32)

  item_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=movielens.ITEM_COLUMN,
      dtype=tf.int32)

  base_model = neumf_model.construct_model(
      user_input, item_input, params, need_strip=True)

  base_model_output = base_model.output

  logits = tf.keras.layers.Lambda(
      lambda x: tf.expand_dims(x, 0),
      name="logits")(base_model_output)

  zeros = tf.keras.layers.Lambda(
      lambda x: x * 0)(logits)

  softmax_logits = tf.keras.layers.concatenate(
      [zeros, logits],
      axis=-1)

  keras_model = tf.keras.Model(
      inputs=[user_input, item_input],
      outputs=softmax_logits)

  keras_model.summary()
  return keras_model
示例#8
0
def _get_keras_model(params):
  """Constructs and returns the model."""
  batch_size = params['batch_size']

  # The input layers are of shape (1, batch_size), to match the size of the
  # input data. The first dimension is needed because the input data are
  # required to be batched to use distribution strategies, and in this case, it
  # is designed to be of batch_size 1 for each replica.
  user_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=movielens.USER_COLUMN,
      dtype=tf.int32)

  item_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=movielens.ITEM_COLUMN,
      dtype=tf.int32)

  base_model = neumf_model.construct_model(
      user_input, item_input, params, need_strip=True)

  base_model_output = base_model.output

  logits = tf.keras.layers.Lambda(
      lambda x: tf.expand_dims(x, 0),
      name="logits")(base_model_output)

  zeros = tf.keras.layers.Lambda(
      lambda x: x * 0)(logits)

  softmax_logits = tf.keras.layers.concatenate(
      [zeros, logits],
      axis=-1)

  keras_model = tf.keras.Model(
      inputs=[user_input, item_input],
      outputs=softmax_logits)

  keras_model.summary()
  return keras_model
示例#9
0
def _get_keras_model(params):
  """Constructs and returns the model."""
  batch_size = params["batch_size"]

  # The input layers are of shape (1, batch_size), to match the size of the
  # input data. The first dimension is needed because the input data are
  # required to be batched to use distribution strategies, and in this case, it
  # is designed to be of batch_size 1 for each replica.
  user_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=movielens.USER_COLUMN,
      dtype=tf.int32)

  item_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=movielens.ITEM_COLUMN,
      dtype=tf.int32)

  valid_pt_mask_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=rconst.VALID_POINT_MASK,
      dtype=tf.bool)

  dup_mask_input = tf.keras.layers.Input(
      shape=(batch_size,),
      batch_size=params["batches_per_step"],
      name=rconst.DUPLICATE_MASK,
      dtype=tf.int32)

  label_input = tf.keras.layers.Input(
      shape=(batch_size, 1),
      batch_size=params["batches_per_step"],
      name=rconst.TRAIN_LABEL_KEY,
      dtype=tf.bool)

  base_model = neumf_model.construct_model(
      user_input, item_input, params, need_strip=True)

  base_model_output = base_model.output

  logits = tf.keras.layers.Lambda(
      lambda x: tf.expand_dims(x, 0),
      name="logits")(base_model_output)

  zeros = tf.keras.layers.Lambda(
      lambda x: x * 0)(logits)

  softmax_logits = tf.keras.layers.concatenate(
      [zeros, logits],
      axis=-1)

  softmax_logits = MetricLayer(params)([softmax_logits, dup_mask_input])

  keras_model = tf.keras.Model(
      inputs={
          movielens.USER_COLUMN: user_input,
          movielens.ITEM_COLUMN: item_input,
          rconst.VALID_POINT_MASK: valid_pt_mask_input,
          rconst.DUPLICATE_MASK: dup_mask_input,
          rconst.TRAIN_LABEL_KEY: label_input},
      outputs=softmax_logits)

  loss_obj = tf.keras.losses.SparseCategoricalCrossentropy(
      from_logits=True,
      reduction="sum")

  keras_model.add_loss(loss_obj(
      y_true=label_input,
      y_pred=softmax_logits,
      sample_weight=valid_pt_mask_input) * 1.0 / batch_size)

  keras_model.summary()
  return keras_model