def test_predict_fp16(self):
     if context.num_gpus() >= 2:
         self.skipTest(
             'No need to test 2+ GPUs without a distribution strategy.')
     self._prepare_files_and_flags('--dtype=fp16')
     t = tm.TransformerTask(FLAGS)
     t.predict()
示例#2
0
 def test_train_2_gpu_fp16(self):
   FLAGS.distribution_strategy = "mirrored"
   FLAGS.num_gpus = 2
   FLAGS.param_set = "base"
   FLAGS.dtype = "fp16"
   t = tm.TransformerTask(FLAGS)
   t.train()
 def test_predict_fp16(self):
   self._prepare_files_and_flags("--dtype=fp16")
   policy = tf.keras.mixed_precision.experimental.Policy(
       'infer_float32_vars')
   tf.keras.mixed_precision.experimental.set_policy(policy)
   t = tm.TransformerTask(FLAGS)
   t.predict()
 def test_eval(self):
     if context.num_gpus() >= 2:
         self.skipTest(
             'No need to test 2+ GPUs without a distribution strategy.')
     self._prepare_files_and_flags()
     t = tm.TransformerTask(FLAGS)
     t.eval()
示例#5
0
 def test_train_static_batch(self):
   if context.num_gpus() >= 2:
     self.skipTest('No need to test 2+ GPUs without a distribution strategy.')
   FLAGS.distribution_strategy = 'one_device'
   FLAGS.static_batch = True
   t = tm.TransformerTask(FLAGS)
   t.train()
 def test_train_2_gpu_fp16(self):
   FLAGS.distribution_strategy = 'mirrored'
   FLAGS.num_gpus = 2
   FLAGS.param_set = 'base'
   FLAGS.dtype = 'fp16'
   t = tm.TransformerTask(FLAGS)
   t.train()
示例#7
0
 def test_eval(self):
   if context.num_gpus() >= 2:
     self.skipTest('No need to test 2+ GPUs without a distribution strategy.')
   if 'test_xla' in sys.argv[0]:
     self.skipTest('TODO(xla): Make this test faster under XLA.')
   self._prepare_files_and_flags()
   t = transformer_main.TransformerTask(FLAGS)
   t.eval()
  def _run_and_report_benchmark(self,
                                bleu_max=None,
                                bleu_min=None,
                                log_steps=None,
                                total_batch_size=None,
                                warmup=1):
    """Report benchmark results by writing to local protobuf file.

    Args:
      bleu_max: highest passing level for bleu score.
      bleu_min: lowest passing level for bleu score.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      total_batch_size: Global batch-size.
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
    """
    start_time_sec = time.time()
    task = transformer_main.TransformerTask(FLAGS)
    stats = task.train()
    wall_time_sec = time.time() - start_time_sec

    metrics = []
    if 'bleu_uncased' in stats:
      if 'bleu_uncased_history' in stats:
        bleu_uncased_best = max(stats['bleu_uncased_history'],
                                key=lambda x: x[1])
        metrics.append({'name': 'bleu_uncased',
                        'value': bleu_uncased_best[1],
                        'min_value': bleu_min,
                        'max_value': bleu_max})
        metrics.append({'name': 'bleu_best_score_iteration',
                        'value': bleu_uncased_best[0]})
        metrics.append({'name': 'bleu_uncased_last',
                        'value': stats['bleu_uncased']})
      else:
        metrics.append({'name': 'bleu_uncased',
                        'value': stats['bleu_uncased'],
                        'min_value': bleu_min,
                        'max_value': bleu_max})

    if (warmup and 'step_timestamp_log' in stats and
        len(stats['step_timestamp_log']) > warmup):
      # first entry in the time_log is start of step 1. The rest of the
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
      elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      num_examples = (
          total_batch_size * log_steps * (len(time_log) - warmup - 1))
      examples_per_sec = num_examples / elapsed
      metrics.append({'name': 'exp_per_second',
                      'value': examples_per_sec})

    if 'avg_exp_per_second' in stats:
      metrics.append({'name': 'avg_exp_per_second',
                      'value': stats['avg_exp_per_second']})

    flags_str = flags_core.get_nondefault_flags_as_str()
    self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics,
                          extras={'flags': flags_str})
 def test_train_2_gpu_fp16(self):
   FLAGS.distribution_strategy = "mirrored"
   FLAGS.num_gpus = 2
   FLAGS.param_set = "base"
   FLAGS.dtype = "fp16"
   policy = tf.keras.mixed_precision.experimental.Policy(
       'infer_float32_vars')
   tf.keras.mixed_precision.experimental.set_policy(policy)
   t = tm.TransformerTask(FLAGS)
   t.train()
示例#10
0
 def test_train_2_gpu(self):
     if context.num_gpus() < 2:
         self.skipTest(
             '{} GPUs are not available for this test. {} GPUs are available'
             .format(2, context.num_gpus()))
     FLAGS.distribution_strategy = 'mirrored'
     FLAGS.num_gpus = 2
     FLAGS.param_set = 'base'
     t = tm.TransformerTask(FLAGS)
     t.train()
示例#11
0
 def test_train_static_batch(self):
   if context.num_gpus() >= 2:
     self.skipTest('No need to test 2+ GPUs without a distribution strategy.')
   FLAGS.distribution_strategy = 'one_device'
   if tf.test.is_built_with_cuda():
     FLAGS.num_gpus = 1
   else:
     FLAGS.num_gpus = 0
   FLAGS.static_batch = True
   t = transformer_main.TransformerTask(FLAGS)
   t.train()
    def test_train(self):
        t = tm.TransformerTask(FLAGS)
        t.train()
        # Test model dir.
        self._assert_exists(self.cur_log_dir)
        # Test saving models.
        self._assert_exists(
            os.path.join(self.cur_log_dir, "saves-model-weights.hdf5"))
        self._assert_exists(os.path.join(self.cur_log_dir, "saves-model.hdf5"))

        # Test callbacks:
        # TensorBoard file.
        self._assert_exists(os.path.join(self.cur_log_dir, "logs"))
        # CSVLogger file.
        self._assert_exists(os.path.join(self.cur_log_dir, "result.csv"))
        # Checkpoint file.
        filenames = os.listdir(self.cur_log_dir)
        matched_weight_file = any([WEIGHT_PATTERN.match(f) for f in filenames])
        self.assertTrue(matched_weight_file)
示例#13
0
 def test_train_1_gpu_with_dist_strat(self):
     FLAGS.distribution_strategy = 'one_device'
     t = tm.TransformerTask(FLAGS)
     t.train()
示例#14
0
 def test_train_static_batch(self):
     FLAGS.distribution_strategy = 'one_device'
     FLAGS.static_batch = True
     t = tm.TransformerTask(FLAGS)
     t.train()
示例#15
0
 def test_train_no_dist_strat(self):
     t = tm.TransformerTask(FLAGS)
     t.train()
示例#16
0
 def test_eval(self):
     self._prepare_files_and_flags()
     t = tm.TransformerTask(FLAGS)
     t.eval()
示例#17
0
 def test_predict_fp16(self):
     self._prepare_files_and_flags('--dtype=fp16')
     t = tm.TransformerTask(FLAGS)
     t.predict()
示例#18
0
 def test_predict(self):
     self._prepare_files_and_flags()
     t = tm.TransformerTask(FLAGS)
     t.predict()
 def test_train_no_dist_strat(self):
     if context.num_gpus() >= 2:
         self.skipTest(
             'No need to test 2+ GPUs without a distribution strategy.')
     t = tm.TransformerTask(FLAGS)
     t.train()
 def test_train_static_batch(self):
   FLAGS.static_batch = True
   t = tm.TransformerTask(FLAGS)
   t.train()
 def test_train_fp16(self):
     FLAGS.dtype = 'fp16'
     t = tm.TransformerTask(FLAGS)
     t.train()
示例#22
0
 def test_train_fp16(self):
     FLAGS.distribution_strategy = 'one_device'
     FLAGS.dtype = 'fp16'
     t = tm.TransformerTask(FLAGS)
     t.train()
示例#23
0
 def test_train(self):
     t = tm.TransformerTask(FLAGS)
     t.train()