示例#1
0
    def test_contrastive_loss_computation(self, temperature):
        batch_size = 2
        project_dim = 16
        projection_norm = False

        p_1_arr = np.random.rand(batch_size, project_dim)
        p_1 = tf.constant(p_1_arr, dtype=tf.float32)
        p_2_arr = np.random.rand(batch_size, project_dim)
        p_2 = tf.constant(p_2_arr, dtype=tf.float32)

        losses_obj = contrastive_losses.ContrastiveLoss(
            projection_norm=projection_norm, temperature=temperature)
        comp_contrastive_loss = losses_obj(projection1=p_1, projection2=p_2)

        def _exp_sim(p1, p2):
            return np.exp(np.matmul(p1, p2) / temperature)

        l11 = -np.log(
            _exp_sim(p_1_arr[0], p_2_arr[0]) /
            (_exp_sim(p_1_arr[0], p_1_arr[1]) +
             _exp_sim(p_1_arr[0], p_2_arr[1]) +
             _exp_sim(p_1_arr[0], p_2_arr[0]))) - np.log(
                 _exp_sim(p_1_arr[0], p_2_arr[0]) /
                 (_exp_sim(p_2_arr[0], p_2_arr[1]) +
                  _exp_sim(p_2_arr[0], p_1_arr[1]) +
                  _exp_sim(p_1_arr[0], p_2_arr[0])))

        l22 = -np.log(
            _exp_sim(p_1_arr[1], p_2_arr[1]) /
            (_exp_sim(p_1_arr[1], p_1_arr[0]) +
             _exp_sim(p_1_arr[1], p_2_arr[0]) +
             _exp_sim(p_1_arr[1], p_2_arr[1]))) - np.log(
                 _exp_sim(p_1_arr[1], p_2_arr[1]) /
                 (_exp_sim(p_2_arr[1], p_2_arr[0]) +
                  _exp_sim(p_2_arr[1], p_1_arr[0]) +
                  _exp_sim(p_1_arr[1], p_2_arr[1])))

        exp_contrastive_loss = (l11 + l22) / 2.0

        self.assertAlmostEqual(comp_contrastive_loss[0].numpy(),
                               exp_contrastive_loss,
                               places=5)
示例#2
0
文件: simclr.py 项目: kia-ctw/models
    def build_losses(self,
                     labels,
                     model_outputs,
                     aux_losses=None) -> Dict[str, tf.Tensor]:
        # Compute contrastive relative loss
        con_losses_obj = contrastive_losses.ContrastiveLoss(
            projection_norm=self.task_config.loss.projection_norm,
            temperature=self.task_config.loss.temperature)
        # The projection outputs from model has the size of
        # (2 * bsz, project_dim)
        projection_outputs = model_outputs[simclr_model.PROJECTION_OUTPUT_KEY]
        projection1, projection2 = tf.split(projection_outputs, 2, 0)
        contrast_loss, (contrast_logits, contrast_labels) = con_losses_obj(
            projection1=projection1, projection2=projection2)

        contrast_accuracy = tf.equal(tf.argmax(contrast_labels, axis=1),
                                     tf.argmax(contrast_logits, axis=1))
        contrast_accuracy = tf.reduce_mean(
            tf.cast(contrast_accuracy, tf.float32))

        contrast_prob = tf.nn.softmax(contrast_logits)
        contrast_entropy = -tf.reduce_mean(
            tf.reduce_sum(contrast_prob * tf.math.log(contrast_prob + 1e-8),
                          -1))

        model_loss = contrast_loss

        losses = {
            'contrast_loss': contrast_loss,
            'contrast_accuracy': contrast_accuracy,
            'contrast_entropy': contrast_entropy
        }

        if self.task_config.model.supervised_head is not None:
            outputs = model_outputs[simclr_model.SUPERVISED_OUTPUT_KEY]
            labels = tf.concat([labels, labels], 0)

            if self.task_config.evaluation.one_hot:
                sup_loss = tf.keras.losses.CategoricalCrossentropy(
                    from_logits=True,
                    reduction=tf.keras.losses.Reduction.NONE)(labels, outputs)
            else:
                sup_loss = tf.keras.losses.SparseCategoricalCrossentropy(
                    from_logits=True,
                    reduction=tf.keras.losses.Reduction.NONE)(labels, outputs)
            sup_loss = tf.reduce_mean(sup_loss)

            label_acc = tf.equal(tf.argmax(labels, axis=1),
                                 tf.argmax(outputs, axis=1))
            label_acc = tf.reduce_mean(tf.cast(label_acc, tf.float32))

            model_loss = contrast_loss + sup_loss

            losses.update({
                'accuracy': label_acc,
                'supervised_loss': sup_loss,
            })

        total_loss = model_loss
        if aux_losses:
            reg_loss = tf.reduce_sum(aux_losses)
            total_loss = model_loss + reg_loss

        losses['total_loss'] = total_loss

        return losses