示例#1
0
 def box_iou(self, true_box, pred_box):
     # based on the type of loss, compute the iou loss for a box
     # compute_<name> indicated the type of iou to use
     if self.iou_type == 'giou':
         _, iou = box_ops.compute_giou(true_box, pred_box)
     elif self.iou_type == 'ciou':
         _, iou = box_ops.compute_ciou(true_box, pred_box)
     else:
         iou = box_ops.compute_iou(true_box, pred_box)
     return iou
示例#2
0
 def box_loss(self, true_box, pred_box, darknet=False):
   """Call iou function and use it to compute the loss for the box maps."""
   if self._loss_type == 'giou':
     iou, liou = box_ops.compute_giou(true_box, pred_box)
   elif self._loss_type == 'ciou':
     iou, liou = box_ops.compute_ciou(true_box, pred_box, darknet=darknet)
   else:
     liou = iou = box_ops.compute_iou(true_box, pred_box)
   loss_box = 1 - liou
   return iou, liou, loss_box
 def test_ious(self, num_boxes):
     boxes = tf.convert_to_tensor(np.random.rand(num_boxes, 4))
     expected_shape = np.array([
         num_boxes,
     ])
     expected_iou = np.ones([
         num_boxes,
     ])
     iou = box_ops.compute_iou(boxes, boxes)
     _, giou = box_ops.compute_giou(boxes, boxes)
     _, ciou = box_ops.compute_ciou(boxes, boxes)
     _, diou = box_ops.compute_diou(boxes, boxes)
     self.assertAllEqual(tf.shape(iou).numpy(), expected_shape)
     self.assertArrayNear(iou, expected_iou, 0.001)
     self.assertArrayNear(giou, expected_iou, 0.001)
     self.assertArrayNear(ciou, expected_iou, 0.001)
     self.assertArrayNear(diou, expected_iou, 0.001)
示例#4
0
def aggregated_comparative_iou(boxes1, boxes2=None, iou_type=0):
    k = tf.shape(boxes1)[-2]

    boxes1 = tf.expand_dims(boxes1, axis=-2)
    boxes1 = tf.tile(boxes1, [1, 1, k, 1])

    if boxes2 is not None:
        boxes2 = tf.expand_dims(boxes2, axis=-2)
        boxes2 = tf.tile(boxes2, [1, 1, k, 1])
        boxes2 = tf.transpose(boxes2, perm=(0, 2, 1, 3))
    else:
        boxes2 = tf.transpose(boxes1, perm=(0, 2, 1, 3))

    if iou_type == 0:  # diou
        _, iou = box_ops.compute_diou(boxes1, boxes2)
    elif iou_type == 1:  # giou
        _, iou = box_ops.compute_giou(boxes1, boxes2)
    else:
        iou = box_ops.compute_iou(boxes1, boxes2, yxyx=True)
    return iou
示例#5
0
def get_best_anchor(y_true, anchors, width=1, height=1):
    """Gets the correct anchor that is assoiciated with each box using IOU.

  Args:
    y_true: tf.Tensor[] for the list of bounding boxes in the yolo format
    anchors: list or tensor for the anchor boxes to be used in prediction
      found via Kmeans
    width: int for the image width
    height: int for the image height

  Returns:
    tf.Tensor: y_true with the anchor associated with each ground truth
    box known.
  """
    with tf.name_scope('get_anchor'):
        width = tf.cast(width, dtype=tf.float32)
        height = tf.cast(height, dtype=tf.float32)

        # split the boxes into center and width height
        anchor_xy = y_true[..., 0:2]

        # scale thhe boxes
        anchors = tf.convert_to_tensor(anchors, dtype=tf.float32)
        anchors_x = anchors[..., 0] / width
        anchors_y = anchors[..., 1] / height
        anchors = tf.stack([anchors_x, anchors_y], axis=-1)
        k = tf.shape(anchors)[0]

        # build a matrix of anchor boxes of shape [num_anchors, num_boxes, 4]
        anchors = tf.transpose(anchors, perm=[1, 0])
        anchor_xy = tf.tile(tf.expand_dims(anchor_xy, axis=-1),
                            [1, 1, tf.shape(anchors)[-1]])
        anchors = tf.tile(tf.expand_dims(anchors, axis=0),
                          [tf.shape(anchor_xy)[0], 1, 1])

        # stack the xy so, each anchor is asscoaited once with each center from
        # the ground truth input
        anchors = tf.concat([anchor_xy, anchors], axis=1)
        anchors = tf.transpose(anchors, perm=[2, 0, 1])

        # copy the gt n times so that each anchor from above can be compared to
        # input ground truth to shape: [num_anchors, num_boxes, 4]
        truth_comp = tf.tile(tf.expand_dims(y_true[..., 0:4], axis=-1),
                             [1, 1, tf.shape(anchors)[0]])
        truth_comp = tf.transpose(truth_comp, perm=[2, 0, 1])

        # compute intersection over union of the boxes, and take the argmax of
        # comuted iou for each box. thus each box is associated with the
        # largest interection over union
        iou_raw = box_ops.compute_iou(truth_comp, anchors)
        values, indexes = tf.math.top_k(tf.transpose(iou_raw, perm=[1, 0]),
                                        k=tf.cast(k, dtype=tf.int32),
                                        sorted=True)
        ind_mask = tf.cast(values > 0.213, dtype=indexes.dtype)

        # pad the indexs such that all values less than the thresh are -1
        # add one, multiply the mask to zeros all the bad locations
        # subtract 1 makeing all the bad locations 0.
        iou_index = tf.concat([
            tf.keras.backend.expand_dims(indexes[..., 0], axis=-1),
            ((indexes[..., 1:] + 1) * ind_mask[..., 1:]) - 1
        ],
                              axis=-1)
        iou_index = iou_index[..., :6]

    return tf.cast(iou_index, dtype=tf.float32)
def get_best_anchor(y_true, anchors, width=1, height=1):
    """Gets the correct anchor that is assoiciated with each box using IOU between
     input anchors and ground truth.
  Args:
      y_true: tf.Tensor[] for the list of bounding boxes in the yolo format
      anchors: list or tensor for the anchor boxes to be used in prediction
          found via Kmeans
      size: size of the image that the bounding boxes were selected at 416 is
          the default for the original YOLO model
  return:
      tf.Tensor: y_true with the anchor associated with each ground truth box
          known
  """
    with tf.name_scope('get_anchor'):
        width = tf.cast(width, dtype=tf.float32)
        height = tf.cast(height, dtype=tf.float32)

        anchor_xy = y_true[..., 0:2]
        true_wh = y_true[..., 2:4]

        # scale thhe boxes
        anchors = tf.convert_to_tensor(anchors, dtype=tf.float32)
        anchors_x = anchors[..., 0] / width
        anchors_y = anchors[..., 1] / height
        anchors = tf.stack([anchors_x, anchors_y], axis=-1)

        # build a matrix of anchor boxes
        anchors = tf.transpose(anchors, perm=[1, 0])
        anchor_xy = tf.tile(tf.expand_dims(anchor_xy, axis=-1),
                            [1, 1, tf.shape(anchors)[-1]])
        anchors = tf.tile(tf.expand_dims(anchors, axis=0),
                          [tf.shape(anchor_xy)[0], 1, 1])

        # stack the xy so, each anchor is asscoaited once with each center from
        # the ground truth input
        anchors = tf.keras.layers.concatenate([anchor_xy, anchors], axis=1)
        anchors = tf.transpose(anchors, perm=[2, 0, 1])

        # copy the gt n times so that each anchor from above can be compared to
        # input ground truth
        truth_comp = tf.tile(tf.expand_dims(y_true[..., 0:4], axis=-1),
                             [1, 1, tf.shape(anchors)[0]])
        truth_comp = tf.transpose(truth_comp, perm=[2, 0, 1])

        # compute intersection over union of the boxes, and take the argmax of
        # comuted iou for each box. thus each box is associated with the largest
        # interection over union
        iou_raw = box_ops.compute_iou(truth_comp, anchors)

        gt_mask = tf.cast(iou_raw > 0.213, dtype=iou_raw.dtype)

        num_k = tf.reduce_max(
            tf.reduce_sum(tf.transpose(gt_mask, perm=[1, 0]), axis=1))
        if num_k <= 0:
            num_k = 1.0

        values, indexes = tf.math.top_k(tf.transpose(iou_raw, perm=[1, 0]),
                                        k=tf.cast(num_k, dtype=tf.int32),
                                        sorted=True)
        ind_mask = tf.cast(values > 0.213, dtype=indexes.dtype)
        iou_index = tf.concat([
            tf.expand_dims(indexes[..., 0], axis=-1),
            ((indexes[..., 1:] + 1) * ind_mask[..., 1:]) - 1
        ],
                              axis=-1)

        stack = tf.zeros(
            [tf.shape(iou_index)[0],
             tf.cast(1, dtype=iou_index.dtype)],
            dtype=iou_index.dtype) - 1
        while num_k < 5:
            iou_index = tf.concat([iou_index, stack], axis=-1)
            num_k += 1
        iou_index = iou_index[..., :5]

        values = tf.concat([
            tf.expand_dims(values[..., 0], axis=-1),
            ((values[..., 1:]) * tf.cast(ind_mask[..., 1:], dtype=tf.float32))
        ],
                           axis=-1)
    return tf.cast(iou_index, dtype=tf.float32)