def test_deeplabv3_builder(self, backbone_type, input_size, weight_decay): num_classes = 21 input_specs = tf.keras.layers.InputSpec( shape=[None, input_size[0], input_size[1], 3]) model_config = semantic_segmentation_cfg.SemanticSegmentationModel( num_classes=num_classes, backbone=backbones.Backbone(type=backbone_type, mobilenet=backbones.MobileNet( model_id='MobileNetV2', output_stride=16)), decoder=decoders.Decoder(type='aspp', aspp=decoders.ASPP(level=4, num_filters=256, dilation_rates=[], spp_layer_version='v1', output_tensor=True)), head=semantic_segmentation_cfg.SegmentationHead( level=4, low_level=2, num_convs=1, upsample_factor=2, use_depthwise_convolution=True)) l2_regularizer = (tf.keras.regularizers.l2(weight_decay) if weight_decay else None) model = factory.build_segmentation_model(input_specs=input_specs, model_config=model_config, l2_regularizer=l2_regularizer) quantization_config = common.Quantization() _ = qat_factory.build_qat_segmentation_model( model=model, quantization=quantization_config, input_specs=input_specs)
def test_builder(self, backbone_type, input_size, segmentation_backbone_type, segmentation_decoder_type): num_classes = 2 input_specs = tf.keras.layers.InputSpec( shape=[None, input_size[0], input_size[1], 3]) segmentation_output_stride = 16 level = int(np.math.log2(segmentation_output_stride)) segmentation_model = semantic_segmentation.SemanticSegmentationModel( num_classes=2, backbone=backbones.Backbone(type=segmentation_backbone_type), decoder=decoders.Decoder(type=segmentation_decoder_type), head=semantic_segmentation.SegmentationHead(level=level)) model_config = panoptic_maskrcnn_cfg.PanopticMaskRCNN( num_classes=num_classes, segmentation_model=segmentation_model, backbone=backbones.Backbone(type=backbone_type), shared_backbone=segmentation_backbone_type is None, shared_decoder=segmentation_decoder_type is None) l2_regularizer = tf.keras.regularizers.l2(5e-5) _ = factory.build_panoptic_maskrcnn(input_specs=input_specs, model_config=model_config, l2_regularizer=l2_regularizer)
def seg_deeplabv3plus_ade20k_32(backbone: str, init_backbone: bool = True ) -> cfg.ExperimentConfig: """Semantic segmentation on ADE20K dataset with deeplabv3+.""" epochs = 200 train_batch_size = 128 eval_batch_size = 32 image_size = 512 steps_per_epoch = ADE20K_TRAIN_EXAMPLES // train_batch_size aspp_dilation_rates = [5, 10, 15] pretrained_checkpoint_path = BACKBONE_PRETRAINED_CHECKPOINT[ backbone] if init_backbone else None config = cfg.ExperimentConfig( task=CustomSemanticSegmentationTaskConfig( model=base_cfg.SemanticSegmentationModel( # ADE20K uses only 32 semantic classes for train/evaluation. # The void (background) class is ignored in train and evaluation. num_classes=32, input_size=[None, None, 3], backbone=Backbone( type='mobilenet_edgetpu', mobilenet_edgetpu=MobileNetEdgeTPU( model_id=backbone, pretrained_checkpoint_path=pretrained_checkpoint_path, freeze_large_filters=500, )), decoder=decoders.Decoder( type='aspp', aspp=decoders.ASPP( level=BACKBONE_HEADPOINT[backbone], use_depthwise_convolution=True, dilation_rates=aspp_dilation_rates, pool_kernel_size=[256, 256], num_filters=128, dropout_rate=0.3, )), head=base_cfg.SegmentationHead( level=BACKBONE_HEADPOINT[backbone], num_convs=2, num_filters=256, use_depthwise_convolution=True, feature_fusion='deeplabv3plus', low_level=BACKBONE_LOWER_FEATURES[backbone], low_level_num_filters=48), norm_activation=common.NormActivation(activation='relu', norm_momentum=0.99, norm_epsilon=2e-3, use_sync_bn=False)), train_data=base_cfg.DataConfig( input_path=os.path.join(ADE20K_INPUT_PATH_BASE, 'train-*'), output_size=[image_size, image_size], is_training=True, global_batch_size=train_batch_size), validation_data=base_cfg.DataConfig( input_path=os.path.join(ADE20K_INPUT_PATH_BASE, 'val-*'), output_size=[image_size, image_size], is_training=False, global_batch_size=eval_batch_size, resize_eval_groundtruth=True, drop_remainder=False), evaluation=base_cfg.Evaluation(report_train_mean_iou=False), ), trainer=cfg.TrainerConfig( steps_per_loop=steps_per_epoch, summary_interval=steps_per_epoch, checkpoint_interval=steps_per_epoch, train_steps=epochs * steps_per_epoch, validation_steps=ADE20K_VAL_EXAMPLES // eval_batch_size, validation_interval=steps_per_epoch, optimizer_config=optimization.OptimizationConfig({ 'optimizer': { 'type': 'adam', }, 'learning_rate': { 'type': 'polynomial', 'polynomial': { 'initial_learning_rate': 0.0001, 'decay_steps': epochs * steps_per_epoch, 'end_learning_rate': 0.0, 'power': 0.9 } }, 'warmup': { 'type': 'linear', 'linear': { 'warmup_steps': 4 * steps_per_epoch, 'warmup_learning_rate': 0 } } })), restrictions=[ 'task.train_data.is_training != None', 'task.validation_data.is_training != None' ]) return config