def test_resnet3d_network_creation(self, model_id, temporal_size, spatial_size, activation, aggregate_endpoints): """Test for creation of a ResNet3D-50 classifier.""" input_specs = tf.keras.layers.InputSpec( shape=[None, temporal_size, spatial_size, spatial_size, 3]) temporal_strides = [1, 1, 1, 1] temporal_kernel_sizes = [(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1), (1, 3, 1)] tf.keras.backend.set_image_data_format('channels_last') backbone = backbones.ResNet3D( model_id=model_id, temporal_strides=temporal_strides, temporal_kernel_sizes=temporal_kernel_sizes, input_specs=input_specs, activation=activation) num_classes = 1000 model = video_classification_model.VideoClassificationModel( backbone=backbone, num_classes=num_classes, input_specs={'image': input_specs}, dropout_rate=0.2, aggregate_endpoints=aggregate_endpoints, ) inputs = np.random.rand(2, temporal_size, spatial_size, spatial_size, 3) logits = model(inputs) self.assertAllEqual([2, num_classes], logits.numpy().shape)
def test_serialize_deserialize(self): """Validate the classification network can be serialized and deserialized.""" model_id = 50 temporal_strides = [1, 1, 1, 1] temporal_kernel_sizes = [(3, 3, 3), (3, 1, 3, 1), (3, 1, 3, 1, 3, 1), (1, 3, 1)] backbone = backbones.ResNet3D( model_id=model_id, temporal_strides=temporal_strides, temporal_kernel_sizes=temporal_kernel_sizes) model = video_classification_model.VideoClassificationModel( backbone=backbone, num_classes=1000) config = model.get_config() new_model = video_classification_model.VideoClassificationModel.from_config( config) # Validate that the config can be forced to JSON. _ = new_model.to_json() # If the serialization was successful, the new config should match the old. self.assertAllEqual(model.get_config(), new_model.get_config())
def build_video_classification_model( input_specs: tf.keras.layers.InputSpec, model_config: video_classification_cfg.VideoClassificationModel, num_classes: int, l2_regularizer: tf.keras.regularizers.Regularizer = None ) -> tf.keras.Model: """Builds the video classification model.""" input_specs_dict = {'image': input_specs} norm_activation_config = model_config.norm_activation backbone = backbones.factory.build_backbone( input_specs=input_specs, backbone_config=model_config.backbone, norm_activation_config=norm_activation_config, l2_regularizer=l2_regularizer) model = video_classification_model.VideoClassificationModel( backbone=backbone, num_classes=num_classes, input_specs=input_specs_dict, dropout_rate=model_config.dropout_rate, aggregate_endpoints=model_config.aggregate_endpoints, kernel_regularizer=l2_regularizer, require_endpoints=model_config.require_endpoints) return model