def get_user_global_predict(self, test_dataset=None): if test_dataset is None: preprocess = DataPreprocess() test_dataset = preprocess.generate_test_data(batch_size=512) # test_dataset = test_dataset.take(1) container = np.random.choice(self.containers) SERVER_URL = container + self.model_url pred_y = [] true_y = [] for test_x, test_y in test_dataset: input_x = get_input_data(test_x) data = {"inputs": input_x} input_data_json = json.dumps(data) response = requests.post(SERVER_URL, data=input_data_json) response = json.loads(response.text) array = np.array(response['outputs']) _array = np.where(array > 0.5, 1, 0) pred_y.extend(_array) true_y.extend(test_y.numpy()[:, np.newaxis]) get_metrics(true_y, pred_y, is_print=True)
def predict(self, test_dataset=None, is_print=True): if test_dataset is None: test_dataset = self.data_process.generate_test_data() true_y = [] pred_y = [] for test_x, test_y in test_dataset: data = get_input_tensor_data(test_x) array = self.deepfm_model(data, training=False) _array = np.where(array > 0.5, 1, 0) pred_y.extend(_array) true_y.extend(test_y.numpy()[:, np.newaxis]) get_metrics(true_y, pred_y, is_print=is_print)