示例#1
0
    def test_mass_conservation(self):

        mb = LinearMassBalance(2600.)

        fls = dummy_constant_bed()
        model = MassConservationChecker(fls, mb_model=mb, y0=0.,
                                        glen_a=self.glen_a)
        model.run_until(200)
        assert_allclose(model.total_mass, model.volume_m3, rtol=1e-3)

        fls = dummy_noisy_bed()
        model = MassConservationChecker(fls, mb_model=mb, y0=0.,
                                        glen_a=self.glen_a)
        model.run_until(200)
        assert_allclose(model.total_mass, model.volume_m3, rtol=1e-3)

        fls = dummy_width_bed_tributary()
        model = MassConservationChecker(fls, mb_model=mb, y0=0.,
                                        glen_a=self.glen_a)
        model.run_until(200)
        assert_allclose(model.total_mass, model.volume_m3, rtol=1e-3)

        # Calving!
        fls = dummy_constant_bed(hmax=1000., hmin=0., nx=100)
        mb = LinearMassBalance(450.)
        model = MassConservationChecker(fls, mb_model=mb, y0=0.,
                                        glen_a=self.glen_a,
                                        is_tidewater=True)
        model.run_until(500)
        tot_vol = model.volume_m3 + model.calving_m3_since_y0
        assert_allclose(model.total_mass, tot_vol, rtol=2e-2)
示例#2
0
    def test_mass_conservation(self):

        mb = LinearMassBalance(2600.)

        fls = dummy_constant_bed()
        model = MassConservationChecker(fls, mb_model=mb, y0=0.,
                                        glen_a=self.glen_a)
        model.run_until(200)
        assert_allclose(model.total_mass, model.volume_m3, rtol=1e-3)

        fls = dummy_noisy_bed()
        model = MassConservationChecker(fls, mb_model=mb, y0=0.,
                                        glen_a=self.glen_a)
        model.run_until(200)
        assert_allclose(model.total_mass, model.volume_m3, rtol=1e-3)

        fls = dummy_width_bed_tributary()
        model = MassConservationChecker(fls, mb_model=mb, y0=0.,
                                        glen_a=self.glen_a)
        model.run_until(200)
        assert_allclose(model.total_mass, model.volume_m3, rtol=1e-3)

        # Calving!
        fls = dummy_constant_bed(hmax=1000., hmin=0., nx=100)
        mb = LinearMassBalance(450.)
        model = MassConservationChecker(fls, mb_model=mb, y0=0.,
                                        glen_a=self.glen_a,
                                        is_tidewater=True)
        model.run_until(500)
        tot_vol = model.volume_m3 + model.calving_m3_since_y0
        assert_allclose(model.total_mass, tot_vol, rtol=2e-2)
示例#3
0
    def test_tributary(self):

        models = [KarthausModel, FluxBasedModel]
        steps = [15 * SEC_IN_DAY, None]
        flss = [dummy_width_bed(), dummy_width_bed_tributary()]
        lens = []
        surface_h = []
        volume = []
        yrs = np.arange(1, 500, 2)
        for model, step, fls in zip(models, steps, flss):
            mb = LinearMassBalance(2600.)

            model = model(fls,
                          mb_model=mb,
                          fs=self.fs_old,
                          glen_a=self.aglen_old,
                          fixed_dt=step)

            length = yrs * 0.
            vol = yrs * 0.
            for i, y in enumerate(yrs):
                model.run_until(y)
                assert model.yr == y
                length[i] = fls[-1].length_m
                vol[i] = np.sum([f.volume_km3 for f in fls])
            lens.append(length)
            volume.append(vol)
            surface_h.append(fls[-1].surface_h.copy())

        np.testing.assert_allclose(lens[0][-1], lens[1][-1], atol=101)
        np.testing.assert_allclose(volume[0][-1], volume[1][-1], atol=2e-2)

        np.testing.assert_allclose(utils.rmsd(lens[0], lens[1]), 0., atol=70)
        np.testing.assert_allclose(utils.rmsd(volume[0], volume[1]),
                                   0.,
                                   atol=6e-3)
        np.testing.assert_allclose(utils.rmsd(surface_h[0], surface_h[1]),
                                   0.,
                                   atol=5)

        if do_plot:  # pragma: no cover
            plt.plot(lens[0], 'r')
            plt.plot(lens[1], 'b')
            plt.show()

            plt.plot(volume[0], 'r')
            plt.plot(volume[1], 'b')
            plt.show()

            plt.plot(fls[-1].bed_h, 'k')
            plt.plot(surface_h[0], 'r')
            plt.plot(surface_h[1], 'b')
            plt.show()
示例#4
0
    def test_flux_gate_with_trib(self):

        mb = ScalarMassBalance()
        model = FluxBasedModel(dummy_width_bed_tributary(), mb_model=mb,
                               flux_gate_thickness=150, flux_gate_build_up=50)
        model.run_until(1000)
        assert_allclose(model.volume_m3, model.flux_gate_m3_since_y0)

        if do_plot:  # pragma: no cover
            plt.plot(model.fls[-1].bed_h, 'k')
            plt.plot(model.fls[-1].surface_h, 'b')
            plt.show()
示例#5
0
    def test_tributary(self):

        models = [KarthausModel, FluxBasedModel]
        steps = [15 * SEC_IN_DAY, None]
        flss = [dummy_width_bed(), dummy_width_bed_tributary()]
        lens = []
        surface_h = []
        volume = []
        yrs = np.arange(1, 500, 2)
        for model, step, fls in zip(models, steps, flss):
            mb = LinearMassBalance(2600.)

            model = model(fls, mb_model=mb, fs=self.fs_old,
                          glen_a=self.aglen_old,
                          fixed_dt=step)

            length = yrs * 0.
            vol = yrs * 0.
            for i, y in enumerate(yrs):
                model.run_until(y)
                length[i] = fls[-1].length_m
                vol[i] = np.sum([f.volume_km3 for f in fls])
            lens.append(length)
            volume.append(vol)
            surface_h.append(fls[-1].surface_h.copy())

        np.testing.assert_allclose(lens[0][-1], lens[1][-1], atol=101)
        np.testing.assert_allclose(volume[0][-1], volume[1][-1], atol=2e-2)

        np.testing.assert_allclose(utils.rmsd(lens[0], lens[1]), 0., atol=70)
        np.testing.assert_allclose(utils.rmsd(volume[0], volume[1]), 0.,
                                   atol=6e-3)
        np.testing.assert_allclose(utils.rmsd(surface_h[0], surface_h[1]), 0.,
                                   atol=5)

        if do_plot:  # pragma: no cover
            plt.plot(lens[0], 'r')
            plt.plot(lens[1], 'b')
            plt.show()

            plt.plot(volume[0], 'r')
            plt.plot(volume[1], 'b')
            plt.show()

            plt.plot(fls[-1].bed_h, 'k')
            plt.plot(surface_h[0], 'r')
            plt.plot(surface_h[1], 'b')
            plt.show()
示例#6
0
    def test_staggered_diagnostics(self):

        mb = LinearMassBalance(2600.)
        fls = dummy_constant_bed()
        model = FluxBasedModel(fls, mb_model=mb, y0=0.)
        model.run_until(700)
        assert_allclose(mb.get_specific_mb(fls=fls), 0, atol=10)

        # Check the flux just for fun
        fl = model.flux_stag[0]
        assert fl[0] == 0

        # Now check the diags
        df = model.get_diagnostics()
        fl = model.fls[0]
        df['my_flux'] = np.cumsum(mb.get_annual_mb(fl.surface_h) *
                                  fl.widths_m * fl.dx_meter *
                                  cfg.SEC_IN_YEAR).clip(0)

        df = df.loc[df['ice_thick'] > 0]

        # Also convert ours
        df['ice_flux'] *= cfg.SEC_IN_YEAR
        df['ice_velocity'] *= cfg.SEC_IN_YEAR
        df['tributary_flux'] *= cfg.SEC_IN_YEAR

        assert_allclose(np.abs(df['ice_flux'] - df['my_flux']), 0, atol=35e3)
        assert df['ice_velocity'].max() > 25
        assert df['tributary_flux'].max() == 0

        fls = dummy_width_bed_tributary()
        model = FluxBasedModel(fls, mb_model=mb, y0=0.)
        model.run_until(500)

        df = model.get_diagnostics()
        df['ice_velocity'] *= cfg.SEC_IN_YEAR
        df['tributary_flux'] *= cfg.SEC_IN_YEAR
        df = df.loc[df['ice_thick'] > 0]
        assert df['ice_velocity'].max() > 50
        assert df['tributary_flux'].max() > 30e4

        df = model.get_diagnostics(fl_id=0)
        df = df.loc[df['ice_thick'] > 0]
        df['ice_velocity'] *= cfg.SEC_IN_YEAR
        df['tributary_flux'] *= cfg.SEC_IN_YEAR
        assert df['ice_velocity'].max() > 10
        assert df['tributary_flux'].max() == 0