示例#1
0
文件: SS.py 项目: githubxinwen/OG-JPN
def SS_solver(bmat, nmat, r, BQ, T_H, factor, Y, p, client,
              fsolve_flag=False):
    '''
    --------------------------------------------------------------------
    Solves for the steady state distribution of capital, labor, as well
    as w, r, T_H and the scaling factor, using a bisection method
    similar to TPI.
    --------------------------------------------------------------------

    INPUTS:
    b_guess_init = [S,J] array, initial guesses for savings
    n_guess_init = [S,J] array, initial guesses for labor supply
    wguess = scalar, initial guess for SS real wage rate
    rguess = scalar, initial guess for SS real interest rate
    T_Hguess = scalar, initial guess for lump sum transfer
    factorguess = scalar, initial guess for scaling factor to dollars
    chi_b = [J,] vector, chi^b_j, the utility weight on bequests
    chi_n = [S,] vector, chi^n_s utility weight on labor supply
    params = length X tuple, list of parameters
    iterative_params = length X tuple, list of parameters that determine
                       the convergence of the while loop
    tau_bq = [J,] vector, bequest tax rate
    rho = [S,] vector, mortality rates by age
    lambdas = [J,] vector, fraction of population with each ability type
    omega = [S,] vector, stationary population weights
    e =  [S,J] array, effective labor units by age and ability type


    OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION:
    euler_equation_solver()
    aggr.get_K()
    aggr.get_L()
    firm.get_Y()
    firm.get_r()
    firm.get_w()
    aggr.get_BQ()
    tax.replacement_rate_vals()
    aggr.revenue()
    utils.convex_combo()
    utils.pct_diff_func()


    OBJECTS CREATED WITHIN FUNCTION:
    b_guess = [S,] vector, initial guess at household savings
    n_guess = [S,] vector, initial guess at household labor supply
    b_s = [S,] vector, wealth enter period with
    b_splus1 = [S,] vector, household savings
    b_splus2 = [S,] vector, household savings one period ahead
    BQ = scalar, aggregate bequests to lifetime income group
    theta = scalar, replacement rate for social security benenfits
    error1 = [S,] vector, errors from FOC for savings
    error2 = [S,] vector, errors from FOC for labor supply
    tax1 = [S,] vector, total income taxes paid
    cons = [S,] vector, household consumption

    OBJECTS CREATED WITHIN FUNCTION - SMALL OPEN ONLY
    Bss = scalar, aggregate household wealth in the steady state
    BIss = scalar, aggregate household net investment in the steady state

    RETURNS: solutions = steady state values of b, n, w, r, factor,
                    T_H ((2*S*J+4)x1 array)

    OUTPUT: None
    --------------------------------------------------------------------
    '''
    # Rename the inputs
    if not p.budget_balance:
        if not p.baseline_spending:
            Y = T_H / p.alpha_T[-1]
    if p.small_open:
        r = p.hh_r[-1]

    dist = 10
    iteration = 0
    dist_vec = np.zeros(p.maxiter)
    maxiter_ss = p.maxiter
    nu_ss = p.nu

    if fsolve_flag:
        maxiter_ss = 1

    while (dist > p.mindist_SS) and (iteration < maxiter_ss):
        # Solve for the steady state levels of b and n, given w, r,
        # Y and factor
        if p.budget_balance:
            outer_loop_vars = (bmat, nmat, r, BQ, T_H, factor)
        else:
            outer_loop_vars = (bmat, nmat, r, BQ, Y, T_H, factor)

        (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
         new_w, new_T_H, new_Y, new_factor, new_BQ,
         average_income_model) =\
            inner_loop(outer_loop_vars, p, client)

        r = utils.convex_combo(new_r, r, nu_ss)
        factor = utils.convex_combo(new_factor, factor, nu_ss)
        BQ = utils.convex_combo(new_BQ, BQ, nu_ss)
        # bmat = utils.convex_combo(new_bmat, bmat, nu_ss)
        # nmat = utils.convex_combo(new_nmat, nmat, nu_ss)
        if not p.baseline_spending:
            T_H = utils.convex_combo(new_T_H, T_H, nu_ss)
            dist = np.array([utils.pct_diff_func(new_r, r)] +
                            list(utils.pct_diff_func(new_BQ, BQ)) +
                            [utils.pct_diff_func(new_T_H, T_H)] +
                            [utils.pct_diff_func(new_factor, factor)]).max()
        else:
            Y = utils.convex_combo(new_Y, Y, nu_ss)
            if Y != 0:
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [utils.pct_diff_func(new_Y, Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
            else:
                # If Y is zero (if there is no output), a percent difference
                # will throw NaN's, so we use an absolute difference
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [abs(new_Y - Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
        dist_vec[iteration] = dist
        # Similar to TPI: if the distance between iterations increases, then
        # decrease the value of nu to prevent cycling
        if iteration > 10:
            if dist_vec[iteration] - dist_vec[iteration - 1] > 0:
                nu_ss /= 2.0
                print('New value of nu:', nu_ss)
        iteration += 1
        print('Iteration: %02d' % iteration, ' Distance: ', dist)

    '''
    ------------------------------------------------------------------------
        Generate the SS values of variables, including euler errors
    ------------------------------------------------------------------------
    '''
    bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0)
    bssmat_splus1 = bmat
    nssmat = nmat

    rss = r
    r_gov_ss = fiscal.get_r_gov(rss, p)
    if p.budget_balance:
        r_hh_ss = rss
        Dss = 0.0
    else:
        Dss = p.debt_ratio_ss * Y
    Lss = aggr.get_L(nssmat, p, 'SS')
    Bss = aggr.get_K(bssmat_splus1, p, 'SS', False)
    K_demand_open_ss = firm.get_K(Lss, p.firm_r[-1], p, 'SS')
    D_f_ss = p.zeta_D[-1] * Dss
    D_d_ss = Dss - D_f_ss
    K_d_ss = Bss - D_d_ss
    if not p.small_open:
        K_f_ss = p.zeta_K[-1] * (K_demand_open_ss - Bss + D_d_ss)
        Kss = K_f_ss + K_d_ss
        # Note that implicity in this computation is that immigrants'
        # wealth is all in the form of private capital
        I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
        Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS')
    else:
        K_d_ss = Bss - D_d_ss
        K_f_ss = K_demand_open_ss - Bss + D_d_ss
        Kss = K_f_ss + K_d_ss
        InvestmentPlaceholder = np.zeros(bssmat_splus1.shape)
        Iss = aggr.get_I(InvestmentPlaceholder, Kss, Kss, p, 'SS')
        BIss = aggr.get_I(bssmat_splus1, Bss, Bss, p, 'BI_SS')
        I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
    r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, Dss)
    wss = new_w
    BQss = new_BQ
    factor_ss = factor
    T_Hss = T_H
    bqssmat = household.get_bq(BQss, None, p, 'SS')

    Yss = firm.get_Y(Kss, Lss, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p)

    # Compute effective and marginal tax rates for all agents
    etr_params_3D = np.tile(np.reshape(
        p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
    mtrx_params_3D = np.tile(np.reshape(
        p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])),
                             (1, p.J, 1))
    mtry_params_3D = np.tile(np.reshape(
        p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])),
                             (1, p.J, 1))
    mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True,
                             p.e, etr_params_3D, mtry_params_3D, p)
    mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False,
                             p.e, etr_params_3D, mtrx_params_3D, p)
    etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e,
                            etr_params_3D, p)

    taxss = tax.total_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat,
                            factor_ss, T_Hss, theta, None, None, False,
                            'SS', p.e, etr_params_3D, p)
    cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1,
                                nssmat, bqssmat, taxss,
                                p.e, p.tau_c[-1, :, :], p)
    yss_before_tax_mat = r_hh_ss * bssmat_s + wss * p.e * nssmat
    Css = aggr.get_C(cssmat, p, 'SS')

    (total_revenue_ss, T_Iss, T_Pss, T_BQss, T_Wss, T_Css,
     business_revenue) =\
        aggr.revenue(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat,
                     Yss, Lss, Kss, factor, theta, etr_params_3D, p,
                     'SS')
    debt_service_ss = r_gov_ss * Dss
    new_borrowing = Dss * ((1 + p.g_n_ss) * np.exp(p.g_y) - 1)
    # government spends such that it expands its debt at the same rate as GDP
    if p.budget_balance:
        Gss = 0.0
    else:
        Gss = total_revenue_ss + new_borrowing - (T_Hss + debt_service_ss)
        print('G components = ', new_borrowing, T_Hss, debt_service_ss)

    # Compute total investment (not just domestic)
    Iss_total = ((1 + p.g_n_ss) * np.exp(p.g_y) - 1 + p.delta) * Kss

    # solve resource constraint
    # net foreign borrowing
    print('Foreign debt holdings = ', D_f_ss)
    print('Foreign capital holdings = ', K_f_ss)
    new_borrowing_f = D_f_ss * (np.exp(p.g_y) * (1 + p.g_n_ss) - 1)
    debt_service_f = D_f_ss * r_hh_ss
    RC = aggr.resource_constraint(Yss, Css, Gss, I_d_ss, K_f_ss,
                                  new_borrowing_f, debt_service_f, r_hh_ss,
                                  p)
    print('resource constraint: ', RC)

    if Gss < 0:
        print('Steady state government spending is negative to satisfy'
              + ' budget')

    if ENFORCE_SOLUTION_CHECKS and (np.absolute(RC) >
                                    p.mindist_SS):
        print('Resource Constraint Difference:', RC)
        err = 'Steady state aggregate resource constraint not satisfied'
        raise RuntimeError(err)

    # check constraints
    household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde)

    euler_savings = euler_errors[:p.S, :]
    euler_labor_leisure = euler_errors[p.S:, :]
    print('Maximum error in labor FOC = ',
          np.absolute(euler_labor_leisure).max())
    print('Maximum error in savings FOC = ',
          np.absolute(euler_savings).max())

    '''
    ------------------------------------------------------------------------
        Return dictionary of SS results
    ------------------------------------------------------------------------
    '''
    output = {'Kss': Kss, 'K_f_ss': K_f_ss, 'K_d_ss': K_d_ss,
              'Bss': Bss, 'Lss': Lss, 'Css': Css, 'Iss': Iss,
              'Iss_total': Iss_total, 'I_d_ss': I_d_ss, 'nssmat': nssmat,
              'Yss': Yss, 'Dss': Dss, 'D_f_ss': D_f_ss,
              'D_d_ss': D_d_ss, 'wss': wss, 'rss': rss,
              'r_gov_ss': r_gov_ss, 'r_hh_ss': r_hh_ss, 'theta': theta,
              'BQss': BQss, 'factor_ss': factor_ss, 'bssmat_s': bssmat_s,
              'cssmat': cssmat, 'bssmat_splus1': bssmat_splus1,
              'yss_before_tax_mat': yss_before_tax_mat,
              'bqssmat': bqssmat, 'T_Hss': T_Hss, 'Gss': Gss,
              'total_revenue_ss': total_revenue_ss,
              'business_revenue': business_revenue,
              'IITpayroll_revenue': T_Iss,
              'T_Pss': T_Pss, 'T_BQss': T_BQss, 'T_Wss': T_Wss,
              'T_Css': T_Css, 'euler_savings': euler_savings,
              'debt_service_f': debt_service_f,
              'new_borrowing_f': new_borrowing_f,
              'debt_service_ss': debt_service_ss,
              'new_borrowing': new_borrowing,
              'euler_labor_leisure': euler_labor_leisure,
              'resource_constraint_error': RC,
              'etr_ss': etr_ss, 'mtrx_ss': mtrx_ss, 'mtry_ss': mtry_ss}

    return output
示例#2
0
def test_constraint_checker_SS(bssmat, nssmat, cssmat, ltilde):

    household.constraint_checker_SS(bssmat, nssmat, cssmat, ltilde)
    assert True
示例#3
0
文件: SS.py 项目: FrancoCalle/OG-USA
def SS_solver(bmat, nmat, r, BQ, TR, factor, Y, p, client,
              fsolve_flag=False):
    '''
    Solves for the steady state distribution of capital, labor, as well
    as w, r, TR and the scaling factor, using functional iteration.

    Args:
        bmat (Numpy array): initial guess at savings, size = SxJ
        nmat (Numpy array): initial guess at labor supply, size = SxJ
        r (scalar): real interest rate
        BQ (array_like): aggregate bequest amount(s)
        TR (scalar): lump sum transfer amount
        factor (scalar): scaling factor converting model units to dollars
        Y (scalar): real GDP
        p (OG-USA Specifications object): model parameters
        client (Dask client object): client

    Returns:
        output (dictionary): dictionary with steady state solution
            results

    '''
    # Rename the inputs
    if not p.budget_balance:
        if not p.baseline_spending:
            Y = TR / p.alpha_T[-1]
    if p.small_open:
        r = p.hh_r[-1]

    dist = 10
    iteration = 0
    dist_vec = np.zeros(p.maxiter)
    maxiter_ss = p.maxiter
    nu_ss = p.nu

    if fsolve_flag:
        maxiter_ss = 1

    while (dist > p.mindist_SS) and (iteration < maxiter_ss):
        # Solve for the steady state levels of b and n, given w, r,
        # Y and factor
        if p.budget_balance:
            outer_loop_vars = (bmat, nmat, r, BQ, TR, factor)
        else:
            outer_loop_vars = (bmat, nmat, r, BQ, Y, TR, factor)

        (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
         new_w, new_TR, new_Y, new_factor, new_BQ,
         average_income_model) =\
            inner_loop(outer_loop_vars, p, client)

        r = utils.convex_combo(new_r, r, nu_ss)
        factor = utils.convex_combo(new_factor, factor, nu_ss)
        BQ = utils.convex_combo(new_BQ, BQ, nu_ss)
        # bmat = utils.convex_combo(new_bmat, bmat, nu_ss)
        # nmat = utils.convex_combo(new_nmat, nmat, nu_ss)
        if not p.baseline_spending:
            TR = utils.convex_combo(new_TR, TR, nu_ss)
            dist = np.array([utils.pct_diff_func(new_r, r)] +
                            list(utils.pct_diff_func(new_BQ, BQ)) +
                            [utils.pct_diff_func(new_TR, TR)] +
                            [utils.pct_diff_func(new_factor, factor)]).max()
        else:
            Y = utils.convex_combo(new_Y, Y, nu_ss)
            if Y != 0:
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [utils.pct_diff_func(new_Y, Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
            else:
                # If Y is zero (if there is no output), a percent difference
                # will throw NaN's, so we use an absolute difference
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [abs(new_Y - Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
        dist_vec[iteration] = dist
        # Similar to TPI: if the distance between iterations increases, then
        # decrease the value of nu to prevent cycling
        if iteration > 10:
            if dist_vec[iteration] - dist_vec[iteration - 1] > 0:
                nu_ss /= 2.0
                print('New value of nu:', nu_ss)
        iteration += 1
        print('Iteration: %02d' % iteration, ' Distance: ', dist)

    # Generate the SS values of variables, including euler errors
    bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0)
    bssmat_splus1 = bmat
    nssmat = nmat

    rss = r
    r_gov_ss = fiscal.get_r_gov(rss, p)
    if p.budget_balance:
        r_hh_ss = rss
        Dss = 0.0
    else:
        Dss = p.debt_ratio_ss * Y
    Lss = aggr.get_L(nssmat, p, 'SS')
    Bss = aggr.get_B(bssmat_splus1, p, 'SS', False)
    K_demand_open_ss = firm.get_K(Lss, p.firm_r[-1], p, 'SS')
    D_f_ss = p.zeta_D[-1] * Dss
    D_d_ss = Dss - D_f_ss
    K_d_ss = Bss - D_d_ss
    if not p.small_open:
        K_f_ss = p.zeta_K[-1] * (K_demand_open_ss - Bss + D_d_ss)
        Kss = K_f_ss + K_d_ss
        # Note that implicity in this computation is that immigrants'
        # wealth is all in the form of private capital
        I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
        Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS')
    else:
        K_d_ss = Bss - D_d_ss
        K_f_ss = K_demand_open_ss - Bss + D_d_ss
        Kss = K_f_ss + K_d_ss
        InvestmentPlaceholder = np.zeros(bssmat_splus1.shape)
        Iss = aggr.get_I(InvestmentPlaceholder, Kss, Kss, p, 'SS')
        I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS')
    r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, Dss)
    wss = new_w
    BQss = new_BQ
    factor_ss = factor
    TR_ss = TR
    bqssmat = household.get_bq(BQss, None, p, 'SS')
    trssmat = household.get_tr(TR_ss, None, p, 'SS')

    Yss = firm.get_Y(Kss, Lss, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p)

    # Compute effective and marginal tax rates for all agents
    etr_params_3D = np.tile(np.reshape(
        p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
    mtrx_params_3D = np.tile(np.reshape(
        p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])),
                             (1, p.J, 1))
    mtry_params_3D = np.tile(np.reshape(
        p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])),
                             (1, p.J, 1))
    mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True,
                             p.e, etr_params_3D, mtry_params_3D, p)
    mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False,
                             p.e, etr_params_3D, mtrx_params_3D, p)
    etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e,
                            etr_params_3D, p)

    taxss = tax.total_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat,
                            factor_ss, trssmat, theta, None, None, False,
                            'SS', p.e, etr_params_3D, p)
    cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1,
                                nssmat, bqssmat, taxss,
                                p.e, p.tau_c[-1, :, :], p)
    yss_before_tax_mat = r_hh_ss * bssmat_s + wss * p.e * nssmat
    Css = aggr.get_C(cssmat, p, 'SS')

    (total_revenue_ss, T_Iss, T_Pss, T_BQss, T_Wss, T_Css,
     business_revenue) =\
        aggr.revenue(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat,
                     Yss, Lss, Kss, factor, theta, etr_params_3D, p,
                     'SS')
    debt_service_ss = r_gov_ss * Dss
    new_borrowing = Dss * ((1 + p.g_n_ss) * np.exp(p.g_y) - 1)
    # government spends such that it expands its debt at the same rate as GDP
    if p.budget_balance:
        Gss = 0.0
    else:
        Gss = total_revenue_ss + new_borrowing - (TR_ss + debt_service_ss)
        print('G components = ', new_borrowing, TR_ss, debt_service_ss)

    # Compute total investment (not just domestic)
    Iss_total = ((1 + p.g_n_ss) * np.exp(p.g_y) - 1 + p.delta) * Kss

    # solve resource constraint
    # net foreign borrowing
    print('Foreign debt holdings = ', D_f_ss)
    print('Foreign capital holdings = ', K_f_ss)
    new_borrowing_f = D_f_ss * (np.exp(p.g_y) * (1 + p.g_n_ss) - 1)
    debt_service_f = D_f_ss * r_hh_ss
    RC = aggr.resource_constraint(Yss, Css, Gss, I_d_ss, K_f_ss,
                                  new_borrowing_f, debt_service_f, r_hh_ss,
                                  p)
    print('resource constraint: ', RC)

    if Gss < 0:
        print('Steady state government spending is negative to satisfy'
              + ' budget')

    if ENFORCE_SOLUTION_CHECKS and (np.absolute(RC) >
                                    p.mindist_SS):
        print('Resource Constraint Difference:', RC)
        err = 'Steady state aggregate resource constraint not satisfied'
        raise RuntimeError(err)

    # check constraints
    household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde)

    euler_savings = euler_errors[:p.S, :]
    euler_labor_leisure = euler_errors[p.S:, :]
    print('Maximum error in labor FOC = ',
          np.absolute(euler_labor_leisure).max())
    print('Maximum error in savings FOC = ',
          np.absolute(euler_savings).max())

    # Return dictionary of SS results
    output = {'Kss': Kss, 'K_f_ss': K_f_ss, 'K_d_ss': K_d_ss,
              'Bss': Bss, 'Lss': Lss, 'Css': Css, 'Iss': Iss,
              'Iss_total': Iss_total, 'I_d_ss': I_d_ss, 'nssmat': nssmat,
              'Yss': Yss, 'Dss': Dss, 'D_f_ss': D_f_ss,
              'D_d_ss': D_d_ss, 'wss': wss, 'rss': rss,
              'r_gov_ss': r_gov_ss, 'r_hh_ss': r_hh_ss, 'theta': theta,
              'BQss': BQss, 'factor_ss': factor_ss, 'bssmat_s': bssmat_s,
              'cssmat': cssmat, 'bssmat_splus1': bssmat_splus1,
              'yss_before_tax_mat': yss_before_tax_mat,
              'bqssmat': bqssmat, 'TR_ss': TR_ss, 'trssmat': trssmat,
              'Gss': Gss, 'total_revenue_ss': total_revenue_ss,
              'business_revenue': business_revenue,
              'IITpayroll_revenue': T_Iss,
              'T_Pss': T_Pss, 'T_BQss': T_BQss, 'T_Wss': T_Wss,
              'T_Css': T_Css, 'euler_savings': euler_savings,
              'debt_service_f': debt_service_f,
              'new_borrowing_f': new_borrowing_f,
              'debt_service_ss': debt_service_ss,
              'new_borrowing': new_borrowing,
              'euler_labor_leisure': euler_labor_leisure,
              'resource_constraint_error': RC,
              'etr_ss': etr_ss, 'mtrx_ss': mtrx_ss, 'mtry_ss': mtry_ss}

    return output
示例#4
0
文件: SS.py 项目: rickecon/OG-USA
def SS_solver(bmat, nmat, r, BQ, T_H, factor, Y, p, client,
              fsolve_flag=False):
    '''
    --------------------------------------------------------------------
    Solves for the steady state distribution of capital, labor, as well
    as w, r, T_H and the scaling factor, using a bisection method
    similar to TPI.
    --------------------------------------------------------------------

    INPUTS:
    b_guess_init = [S,J] array, initial guesses for savings
    n_guess_init = [S,J] array, initial guesses for labor supply
    wguess = scalar, initial guess for SS real wage rate
    rguess = scalar, initial guess for SS real interest rate
    T_Hguess = scalar, initial guess for lump sum transfer
    factorguess = scalar, initial guess for scaling factor to dollars
    chi_b = [J,] vector, chi^b_j, the utility weight on bequests
    chi_n = [S,] vector, chi^n_s utility weight on labor supply
    params = length X tuple, list of parameters
    iterative_params = length X tuple, list of parameters that determine
                       the convergence of the while loop
    tau_bq = [J,] vector, bequest tax rate
    rho = [S,] vector, mortality rates by age
    lambdas = [J,] vector, fraction of population with each ability type
    omega = [S,] vector, stationary population weights
    e =  [S,J] array, effective labor units by age and ability type


    OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION:
    euler_equation_solver()
    aggr.get_K()
    aggr.get_L()
    firm.get_Y()
    firm.get_r()
    firm.get_w()
    aggr.get_BQ()
    tax.replacement_rate_vals()
    aggr.revenue()
    utils.convex_combo()
    utils.pct_diff_func()


    OBJECTS CREATED WITHIN FUNCTION:
    b_guess = [S,] vector, initial guess at household savings
    n_guess = [S,] vector, initial guess at household labor supply
    b_s = [S,] vector, wealth enter period with
    b_splus1 = [S,] vector, household savings
    b_splus2 = [S,] vector, household savings one period ahead
    BQ = scalar, aggregate bequests to lifetime income group
    theta = scalar, replacement rate for social security benenfits
    error1 = [S,] vector, errors from FOC for savings
    error2 = [S,] vector, errors from FOC for labor supply
    tax1 = [S,] vector, total income taxes paid
    cons = [S,] vector, household consumption

    OBJECTS CREATED WITHIN FUNCTION - SMALL OPEN ONLY
    Bss = scalar, aggregate household wealth in the steady state
    BIss = scalar, aggregate household net investment in the steady state

    RETURNS: solutions = steady state values of b, n, w, r, factor,
                    T_H ((2*S*J+4)x1 array)

    OUTPUT: None
    --------------------------------------------------------------------
    '''
    # Rename the inputs
    if not p.budget_balance:
        if not p.baseline_spending:
            Y = T_H / p.alpha_T[-1]
    if p.small_open:
        r = p.hh_r[-1]

    dist = 10
    iteration = 0
    dist_vec = np.zeros(p.maxiter)
    maxiter_ss = p.maxiter
    nu_ss = p.nu

    if fsolve_flag:
        maxiter_ss = 1

    while (dist > p.mindist_SS) and (iteration < maxiter_ss):
        # Solve for the steady state levels of b and n, given w, r,
        # Y and factor
        if p.budget_balance:
            outer_loop_vars = (bmat, nmat, r, BQ, T_H, factor)
        else:
            outer_loop_vars = (bmat, nmat, r, BQ, Y, T_H, factor)

        (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh,
         new_w, new_T_H, new_Y, new_factor, new_BQ,
         average_income_model) =\
            inner_loop(outer_loop_vars, p, client)

        r = utils.convex_combo(new_r, r, nu_ss)
        factor = utils.convex_combo(new_factor, factor, nu_ss)
        BQ = utils.convex_combo(new_BQ, BQ, nu_ss)
        # bmat = utils.convex_combo(new_bmat, bmat, nu_ss)
        # nmat = utils.convex_combo(new_nmat, nmat, nu_ss)
        if p.budget_balance:
            T_H = utils.convex_combo(new_T_H, T_H, nu_ss)
            dist = np.array([utils.pct_diff_func(new_r, r)] +
                            list(utils.pct_diff_func(new_BQ, BQ)) +
                            [utils.pct_diff_func(new_T_H, T_H)] +
                            [utils.pct_diff_func(new_factor, factor)]).max()
        else:
            Y = utils.convex_combo(new_Y, Y, nu_ss)
            if Y != 0:
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [utils.pct_diff_func(new_Y, Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
            else:
                # If Y is zero (if there is no output), a percent difference
                # will throw NaN's, so we use an absoluate difference
                dist = np.array([utils.pct_diff_func(new_r, r)] +
                                list(utils.pct_diff_func(new_BQ, BQ)) +
                                [abs(new_Y - Y)] +
                                [utils.pct_diff_func(new_factor,
                                                     factor)]).max()
        dist_vec[iteration] = dist
        # Similar to TPI: if the distance between iterations increases, then
        # decrease the value of nu to prevent cycling
        if iteration > 10:
            if dist_vec[iteration] - dist_vec[iteration - 1] > 0:
                nu_ss /= 2.0
                print('New value of nu:', nu_ss)
        iteration += 1
        print('Iteration: %02d' % iteration, ' Distance: ', dist)

    '''
    ------------------------------------------------------------------------
        Generate the SS values of variables, including euler errors
    ------------------------------------------------------------------------
    '''
    bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0)
    bssmat_splus1 = bmat
    nssmat = nmat

    rss = r
    r_gov_ss = fiscal.get_r_gov(rss, p)
    if p.budget_balance:
        r_hh_ss = rss
        debt_ss = 0.0
    else:
        debt_ss = p.debt_ratio_ss * Y
    Lss = aggr.get_L(nssmat, p, 'SS')
    if not p.small_open:
        Bss = aggr.get_K(bssmat_splus1, p, 'SS', False)
        Kss = Bss - debt_ss
        Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS')
    else:
        # Compute capital (K) and wealth (B) separately
        Kss = firm.get_K(Lss, p.firm_r[-1], p, 'SS')
        InvestmentPlaceholder = np.zeros(bssmat_splus1.shape)
        Iss = aggr.get_I(InvestmentPlaceholder, Kss, Kss, p, 'SS')
        Bss = aggr.get_K(bssmat_splus1, p, 'SS', False)
        BIss = aggr.get_I(bssmat_splus1, Bss, Bss, p, 'BI_SS')

    if p.budget_balance:
        r_hh_ss = rss
    else:
        r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, debt_ss)
    if p.small_open:
        r_hh_ss = p.hh_r[-1]
    wss = new_w
    BQss = new_BQ
    factor_ss = factor
    T_Hss = T_H
    bqssmat = household.get_bq(BQss, None, p, 'SS')

    Yss = firm.get_Y(Kss, Lss, p, 'SS')
    theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p)

    # Compute effective and marginal tax rates for all agents
    etr_params_3D = np.tile(np.reshape(
        p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1))
    mtrx_params_3D = np.tile(np.reshape(
        p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])),
                             (1, p.J, 1))
    mtry_params_3D = np.tile(np.reshape(
        p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])),
                             (1, p.J, 1))
    mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True,
                             p.e, etr_params_3D, mtry_params_3D, p)
    mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False,
                             p.e, etr_params_3D, mtrx_params_3D, p)
    etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e,
                            etr_params_3D, p)

    taxss = tax.total_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat,
                            factor_ss, T_Hss, theta, None, None, False,
                            'SS', p.e, etr_params_3D, p)
    cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1,
                                nssmat, bqssmat, taxss,
                                p.e, p.tau_c[-1, :, :], p)
    Css = aggr.get_C(cssmat, p, 'SS')

    (total_revenue_ss, T_Iss, T_Pss, T_BQss, T_Wss, T_Css,
     business_revenue) =\
        aggr.revenue(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat,
                     Yss, Lss, Kss, factor, theta, etr_params_3D, p,
                     'SS')
    debt_service_ss = r_gov_ss * p.debt_ratio_ss * Yss
    new_borrowing = p.debt_ratio_ss * Yss * ((1 + p.g_n_ss) *
                                             np.exp(p.g_y) - 1)
    # government spends such that it expands its debt at the same rate as GDP
    if p.budget_balance:
        Gss = 0.0
    else:
        Gss = total_revenue_ss + new_borrowing - (T_Hss + debt_service_ss)
        print('G components = ', new_borrowing, T_Hss, debt_service_ss)

    # Compute total investment (not just domestic)
    Iss_total = p.delta * Kss

    # solve resource constraint
    if p.small_open:
        # include term for current account
        resource_constraint = (Yss + new_borrowing - (Css + BIss + Gss)
                               + (p.hh_r[-1] * Bss -
                                  (p.delta + p.firm_r[-1]) *
                                  Kss - debt_service_ss))
        print('Yss= ', Yss, '\n', 'Css= ', Css, '\n', 'Bss = ', Bss,
              '\n', 'BIss = ', BIss, '\n', 'Kss = ', Kss, '\n', 'Iss = ',
              Iss, '\n', 'Lss = ', Lss, '\n', 'T_H = ', T_H, '\n',
              'Gss= ', Gss)
        print('D/Y:', debt_ss / Yss, 'T/Y:', T_Hss / Yss, 'G/Y:',
              Gss / Yss, 'Rev/Y:', total_revenue_ss / Yss,
              'Int payments to GDP:', (r_gov_ss * debt_ss) / Yss)
        print('resource constraint: ', resource_constraint)
    else:
        resource_constraint = Yss - (Css + Iss + Gss)
        print('Yss= ', Yss, '\n', 'Gss= ', Gss, '\n', 'Css= ', Css, '\n',
              'Kss = ', Kss, '\n', 'Iss = ', Iss, '\n', 'Lss = ', Lss,
              '\n', 'Debt service = ', debt_service_ss)
        print('D/Y:', debt_ss / Yss, 'T/Y:', T_Hss / Yss, 'G/Y:',
              Gss / Yss, 'Rev/Y:', total_revenue_ss / Yss, 'business rev/Y: ',
              business_revenue / Yss, 'Int payments to GDP:',
              (r_gov_ss * debt_ss) / Yss)
        print('Check SS budget: ', Gss - (np.exp(p.g_y) *
                                          (1 + p.g_n_ss) - 1 - r_gov_ss)
              * debt_ss - total_revenue_ss + T_Hss)
        print('resource constraint: ', resource_constraint)

    if Gss < 0:
        print('Steady state government spending is negative to satisfy'
              + ' budget')

    if ENFORCE_SOLUTION_CHECKS and (np.absolute(resource_constraint) >
                                    p.mindist_SS):
        print('Resource Constraint Difference:', resource_constraint)
        err = 'Steady state aggregate resource constraint not satisfied'
        raise RuntimeError(err)

    # check constraints
    household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde)

    euler_savings = euler_errors[:p.S, :]
    euler_labor_leisure = euler_errors[p.S:, :]
    print('Maximum error in labor FOC = ',
          np.absolute(euler_labor_leisure).max())
    print('Maximum error in savings FOC = ',
          np.absolute(euler_savings).max())

    '''
    ------------------------------------------------------------------------
        Return dictionary of SS results
    ------------------------------------------------------------------------
    '''
    output = {'Kss': Kss, 'Bss': Bss, 'Lss': Lss, 'Css': Css, 'Iss': Iss,
              'Iss_total': Iss_total, 'nssmat': nssmat, 'Yss': Yss,
              'Dss': debt_ss, 'wss': wss, 'rss': rss,
              'r_gov_ss': r_gov_ss, 'r_hh_ss': r_hh_ss, 'theta': theta,
              'BQss': BQss, 'factor_ss': factor_ss, 'bssmat_s': bssmat_s,
              'cssmat': cssmat, 'bssmat_splus1': bssmat_splus1,
              'bqssmat': bqssmat, 'T_Hss': T_Hss, 'Gss': Gss,
              'total_revenue_ss': total_revenue_ss,
              'business_revenue': business_revenue,
              'IITpayroll_revenue': T_Iss,
              'T_Pss': T_Pss, 'T_BQss': T_BQss, 'T_Wss': T_Wss,
              'T_Css': T_Css, 'euler_savings': euler_savings,
              'euler_labor_leisure': euler_labor_leisure,
              'resource_constraint_error': resource_constraint,
              'etr_ss': etr_ss, 'mtrx_ss': mtrx_ss, 'mtry_ss': mtry_ss}

    return output