def SS_solver(bmat, nmat, r, BQ, T_H, factor, Y, p, client, fsolve_flag=False): ''' -------------------------------------------------------------------- Solves for the steady state distribution of capital, labor, as well as w, r, T_H and the scaling factor, using a bisection method similar to TPI. -------------------------------------------------------------------- INPUTS: b_guess_init = [S,J] array, initial guesses for savings n_guess_init = [S,J] array, initial guesses for labor supply wguess = scalar, initial guess for SS real wage rate rguess = scalar, initial guess for SS real interest rate T_Hguess = scalar, initial guess for lump sum transfer factorguess = scalar, initial guess for scaling factor to dollars chi_b = [J,] vector, chi^b_j, the utility weight on bequests chi_n = [S,] vector, chi^n_s utility weight on labor supply params = length X tuple, list of parameters iterative_params = length X tuple, list of parameters that determine the convergence of the while loop tau_bq = [J,] vector, bequest tax rate rho = [S,] vector, mortality rates by age lambdas = [J,] vector, fraction of population with each ability type omega = [S,] vector, stationary population weights e = [S,J] array, effective labor units by age and ability type OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: euler_equation_solver() aggr.get_K() aggr.get_L() firm.get_Y() firm.get_r() firm.get_w() aggr.get_BQ() tax.replacement_rate_vals() aggr.revenue() utils.convex_combo() utils.pct_diff_func() OBJECTS CREATED WITHIN FUNCTION: b_guess = [S,] vector, initial guess at household savings n_guess = [S,] vector, initial guess at household labor supply b_s = [S,] vector, wealth enter period with b_splus1 = [S,] vector, household savings b_splus2 = [S,] vector, household savings one period ahead BQ = scalar, aggregate bequests to lifetime income group theta = scalar, replacement rate for social security benenfits error1 = [S,] vector, errors from FOC for savings error2 = [S,] vector, errors from FOC for labor supply tax1 = [S,] vector, total income taxes paid cons = [S,] vector, household consumption OBJECTS CREATED WITHIN FUNCTION - SMALL OPEN ONLY Bss = scalar, aggregate household wealth in the steady state BIss = scalar, aggregate household net investment in the steady state RETURNS: solutions = steady state values of b, n, w, r, factor, T_H ((2*S*J+4)x1 array) OUTPUT: None -------------------------------------------------------------------- ''' # Rename the inputs if not p.budget_balance: if not p.baseline_spending: Y = T_H / p.alpha_T[-1] if p.small_open: r = p.hh_r[-1] dist = 10 iteration = 0 dist_vec = np.zeros(p.maxiter) maxiter_ss = p.maxiter nu_ss = p.nu if fsolve_flag: maxiter_ss = 1 while (dist > p.mindist_SS) and (iteration < maxiter_ss): # Solve for the steady state levels of b and n, given w, r, # Y and factor if p.budget_balance: outer_loop_vars = (bmat, nmat, r, BQ, T_H, factor) else: outer_loop_vars = (bmat, nmat, r, BQ, Y, T_H, factor) (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh, new_w, new_T_H, new_Y, new_factor, new_BQ, average_income_model) =\ inner_loop(outer_loop_vars, p, client) r = utils.convex_combo(new_r, r, nu_ss) factor = utils.convex_combo(new_factor, factor, nu_ss) BQ = utils.convex_combo(new_BQ, BQ, nu_ss) # bmat = utils.convex_combo(new_bmat, bmat, nu_ss) # nmat = utils.convex_combo(new_nmat, nmat, nu_ss) if not p.baseline_spending: T_H = utils.convex_combo(new_T_H, T_H, nu_ss) dist = np.array([utils.pct_diff_func(new_r, r)] + list(utils.pct_diff_func(new_BQ, BQ)) + [utils.pct_diff_func(new_T_H, T_H)] + [utils.pct_diff_func(new_factor, factor)]).max() else: Y = utils.convex_combo(new_Y, Y, nu_ss) if Y != 0: dist = np.array([utils.pct_diff_func(new_r, r)] + list(utils.pct_diff_func(new_BQ, BQ)) + [utils.pct_diff_func(new_Y, Y)] + [utils.pct_diff_func(new_factor, factor)]).max() else: # If Y is zero (if there is no output), a percent difference # will throw NaN's, so we use an absolute difference dist = np.array([utils.pct_diff_func(new_r, r)] + list(utils.pct_diff_func(new_BQ, BQ)) + [abs(new_Y - Y)] + [utils.pct_diff_func(new_factor, factor)]).max() dist_vec[iteration] = dist # Similar to TPI: if the distance between iterations increases, then # decrease the value of nu to prevent cycling if iteration > 10: if dist_vec[iteration] - dist_vec[iteration - 1] > 0: nu_ss /= 2.0 print('New value of nu:', nu_ss) iteration += 1 print('Iteration: %02d' % iteration, ' Distance: ', dist) ''' ------------------------------------------------------------------------ Generate the SS values of variables, including euler errors ------------------------------------------------------------------------ ''' bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0) bssmat_splus1 = bmat nssmat = nmat rss = r r_gov_ss = fiscal.get_r_gov(rss, p) if p.budget_balance: r_hh_ss = rss Dss = 0.0 else: Dss = p.debt_ratio_ss * Y Lss = aggr.get_L(nssmat, p, 'SS') Bss = aggr.get_K(bssmat_splus1, p, 'SS', False) K_demand_open_ss = firm.get_K(Lss, p.firm_r[-1], p, 'SS') D_f_ss = p.zeta_D[-1] * Dss D_d_ss = Dss - D_f_ss K_d_ss = Bss - D_d_ss if not p.small_open: K_f_ss = p.zeta_K[-1] * (K_demand_open_ss - Bss + D_d_ss) Kss = K_f_ss + K_d_ss # Note that implicity in this computation is that immigrants' # wealth is all in the form of private capital I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS') Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS') else: K_d_ss = Bss - D_d_ss K_f_ss = K_demand_open_ss - Bss + D_d_ss Kss = K_f_ss + K_d_ss InvestmentPlaceholder = np.zeros(bssmat_splus1.shape) Iss = aggr.get_I(InvestmentPlaceholder, Kss, Kss, p, 'SS') BIss = aggr.get_I(bssmat_splus1, Bss, Bss, p, 'BI_SS') I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS') r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, Dss) wss = new_w BQss = new_BQ factor_ss = factor T_Hss = T_H bqssmat = household.get_bq(BQss, None, p, 'SS') Yss = firm.get_Y(Kss, Lss, p, 'SS') theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p) # Compute effective and marginal tax rates for all agents etr_params_3D = np.tile(np.reshape( p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1)) mtrx_params_3D = np.tile(np.reshape( p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])), (1, p.J, 1)) mtry_params_3D = np.tile(np.reshape( p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])), (1, p.J, 1)) mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True, p.e, etr_params_3D, mtry_params_3D, p) mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False, p.e, etr_params_3D, mtrx_params_3D, p) etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e, etr_params_3D, p) taxss = tax.total_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, factor_ss, T_Hss, theta, None, None, False, 'SS', p.e, etr_params_3D, p) cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1, nssmat, bqssmat, taxss, p.e, p.tau_c[-1, :, :], p) yss_before_tax_mat = r_hh_ss * bssmat_s + wss * p.e * nssmat Css = aggr.get_C(cssmat, p, 'SS') (total_revenue_ss, T_Iss, T_Pss, T_BQss, T_Wss, T_Css, business_revenue) =\ aggr.revenue(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat, Yss, Lss, Kss, factor, theta, etr_params_3D, p, 'SS') debt_service_ss = r_gov_ss * Dss new_borrowing = Dss * ((1 + p.g_n_ss) * np.exp(p.g_y) - 1) # government spends such that it expands its debt at the same rate as GDP if p.budget_balance: Gss = 0.0 else: Gss = total_revenue_ss + new_borrowing - (T_Hss + debt_service_ss) print('G components = ', new_borrowing, T_Hss, debt_service_ss) # Compute total investment (not just domestic) Iss_total = ((1 + p.g_n_ss) * np.exp(p.g_y) - 1 + p.delta) * Kss # solve resource constraint # net foreign borrowing print('Foreign debt holdings = ', D_f_ss) print('Foreign capital holdings = ', K_f_ss) new_borrowing_f = D_f_ss * (np.exp(p.g_y) * (1 + p.g_n_ss) - 1) debt_service_f = D_f_ss * r_hh_ss RC = aggr.resource_constraint(Yss, Css, Gss, I_d_ss, K_f_ss, new_borrowing_f, debt_service_f, r_hh_ss, p) print('resource constraint: ', RC) if Gss < 0: print('Steady state government spending is negative to satisfy' + ' budget') if ENFORCE_SOLUTION_CHECKS and (np.absolute(RC) > p.mindist_SS): print('Resource Constraint Difference:', RC) err = 'Steady state aggregate resource constraint not satisfied' raise RuntimeError(err) # check constraints household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde) euler_savings = euler_errors[:p.S, :] euler_labor_leisure = euler_errors[p.S:, :] print('Maximum error in labor FOC = ', np.absolute(euler_labor_leisure).max()) print('Maximum error in savings FOC = ', np.absolute(euler_savings).max()) ''' ------------------------------------------------------------------------ Return dictionary of SS results ------------------------------------------------------------------------ ''' output = {'Kss': Kss, 'K_f_ss': K_f_ss, 'K_d_ss': K_d_ss, 'Bss': Bss, 'Lss': Lss, 'Css': Css, 'Iss': Iss, 'Iss_total': Iss_total, 'I_d_ss': I_d_ss, 'nssmat': nssmat, 'Yss': Yss, 'Dss': Dss, 'D_f_ss': D_f_ss, 'D_d_ss': D_d_ss, 'wss': wss, 'rss': rss, 'r_gov_ss': r_gov_ss, 'r_hh_ss': r_hh_ss, 'theta': theta, 'BQss': BQss, 'factor_ss': factor_ss, 'bssmat_s': bssmat_s, 'cssmat': cssmat, 'bssmat_splus1': bssmat_splus1, 'yss_before_tax_mat': yss_before_tax_mat, 'bqssmat': bqssmat, 'T_Hss': T_Hss, 'Gss': Gss, 'total_revenue_ss': total_revenue_ss, 'business_revenue': business_revenue, 'IITpayroll_revenue': T_Iss, 'T_Pss': T_Pss, 'T_BQss': T_BQss, 'T_Wss': T_Wss, 'T_Css': T_Css, 'euler_savings': euler_savings, 'debt_service_f': debt_service_f, 'new_borrowing_f': new_borrowing_f, 'debt_service_ss': debt_service_ss, 'new_borrowing': new_borrowing, 'euler_labor_leisure': euler_labor_leisure, 'resource_constraint_error': RC, 'etr_ss': etr_ss, 'mtrx_ss': mtrx_ss, 'mtry_ss': mtry_ss} return output
def test_constraint_checker_SS(bssmat, nssmat, cssmat, ltilde): household.constraint_checker_SS(bssmat, nssmat, cssmat, ltilde) assert True
def SS_solver(bmat, nmat, r, BQ, TR, factor, Y, p, client, fsolve_flag=False): ''' Solves for the steady state distribution of capital, labor, as well as w, r, TR and the scaling factor, using functional iteration. Args: bmat (Numpy array): initial guess at savings, size = SxJ nmat (Numpy array): initial guess at labor supply, size = SxJ r (scalar): real interest rate BQ (array_like): aggregate bequest amount(s) TR (scalar): lump sum transfer amount factor (scalar): scaling factor converting model units to dollars Y (scalar): real GDP p (OG-USA Specifications object): model parameters client (Dask client object): client Returns: output (dictionary): dictionary with steady state solution results ''' # Rename the inputs if not p.budget_balance: if not p.baseline_spending: Y = TR / p.alpha_T[-1] if p.small_open: r = p.hh_r[-1] dist = 10 iteration = 0 dist_vec = np.zeros(p.maxiter) maxiter_ss = p.maxiter nu_ss = p.nu if fsolve_flag: maxiter_ss = 1 while (dist > p.mindist_SS) and (iteration < maxiter_ss): # Solve for the steady state levels of b and n, given w, r, # Y and factor if p.budget_balance: outer_loop_vars = (bmat, nmat, r, BQ, TR, factor) else: outer_loop_vars = (bmat, nmat, r, BQ, Y, TR, factor) (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh, new_w, new_TR, new_Y, new_factor, new_BQ, average_income_model) =\ inner_loop(outer_loop_vars, p, client) r = utils.convex_combo(new_r, r, nu_ss) factor = utils.convex_combo(new_factor, factor, nu_ss) BQ = utils.convex_combo(new_BQ, BQ, nu_ss) # bmat = utils.convex_combo(new_bmat, bmat, nu_ss) # nmat = utils.convex_combo(new_nmat, nmat, nu_ss) if not p.baseline_spending: TR = utils.convex_combo(new_TR, TR, nu_ss) dist = np.array([utils.pct_diff_func(new_r, r)] + list(utils.pct_diff_func(new_BQ, BQ)) + [utils.pct_diff_func(new_TR, TR)] + [utils.pct_diff_func(new_factor, factor)]).max() else: Y = utils.convex_combo(new_Y, Y, nu_ss) if Y != 0: dist = np.array([utils.pct_diff_func(new_r, r)] + list(utils.pct_diff_func(new_BQ, BQ)) + [utils.pct_diff_func(new_Y, Y)] + [utils.pct_diff_func(new_factor, factor)]).max() else: # If Y is zero (if there is no output), a percent difference # will throw NaN's, so we use an absolute difference dist = np.array([utils.pct_diff_func(new_r, r)] + list(utils.pct_diff_func(new_BQ, BQ)) + [abs(new_Y - Y)] + [utils.pct_diff_func(new_factor, factor)]).max() dist_vec[iteration] = dist # Similar to TPI: if the distance between iterations increases, then # decrease the value of nu to prevent cycling if iteration > 10: if dist_vec[iteration] - dist_vec[iteration - 1] > 0: nu_ss /= 2.0 print('New value of nu:', nu_ss) iteration += 1 print('Iteration: %02d' % iteration, ' Distance: ', dist) # Generate the SS values of variables, including euler errors bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0) bssmat_splus1 = bmat nssmat = nmat rss = r r_gov_ss = fiscal.get_r_gov(rss, p) if p.budget_balance: r_hh_ss = rss Dss = 0.0 else: Dss = p.debt_ratio_ss * Y Lss = aggr.get_L(nssmat, p, 'SS') Bss = aggr.get_B(bssmat_splus1, p, 'SS', False) K_demand_open_ss = firm.get_K(Lss, p.firm_r[-1], p, 'SS') D_f_ss = p.zeta_D[-1] * Dss D_d_ss = Dss - D_f_ss K_d_ss = Bss - D_d_ss if not p.small_open: K_f_ss = p.zeta_K[-1] * (K_demand_open_ss - Bss + D_d_ss) Kss = K_f_ss + K_d_ss # Note that implicity in this computation is that immigrants' # wealth is all in the form of private capital I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS') Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS') else: K_d_ss = Bss - D_d_ss K_f_ss = K_demand_open_ss - Bss + D_d_ss Kss = K_f_ss + K_d_ss InvestmentPlaceholder = np.zeros(bssmat_splus1.shape) Iss = aggr.get_I(InvestmentPlaceholder, Kss, Kss, p, 'SS') I_d_ss = aggr.get_I(bssmat_splus1, K_d_ss, K_d_ss, p, 'SS') r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, Dss) wss = new_w BQss = new_BQ factor_ss = factor TR_ss = TR bqssmat = household.get_bq(BQss, None, p, 'SS') trssmat = household.get_tr(TR_ss, None, p, 'SS') Yss = firm.get_Y(Kss, Lss, p, 'SS') theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p) # Compute effective and marginal tax rates for all agents etr_params_3D = np.tile(np.reshape( p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1)) mtrx_params_3D = np.tile(np.reshape( p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])), (1, p.J, 1)) mtry_params_3D = np.tile(np.reshape( p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])), (1, p.J, 1)) mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True, p.e, etr_params_3D, mtry_params_3D, p) mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False, p.e, etr_params_3D, mtrx_params_3D, p) etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e, etr_params_3D, p) taxss = tax.total_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, factor_ss, trssmat, theta, None, None, False, 'SS', p.e, etr_params_3D, p) cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1, nssmat, bqssmat, taxss, p.e, p.tau_c[-1, :, :], p) yss_before_tax_mat = r_hh_ss * bssmat_s + wss * p.e * nssmat Css = aggr.get_C(cssmat, p, 'SS') (total_revenue_ss, T_Iss, T_Pss, T_BQss, T_Wss, T_Css, business_revenue) =\ aggr.revenue(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat, Yss, Lss, Kss, factor, theta, etr_params_3D, p, 'SS') debt_service_ss = r_gov_ss * Dss new_borrowing = Dss * ((1 + p.g_n_ss) * np.exp(p.g_y) - 1) # government spends such that it expands its debt at the same rate as GDP if p.budget_balance: Gss = 0.0 else: Gss = total_revenue_ss + new_borrowing - (TR_ss + debt_service_ss) print('G components = ', new_borrowing, TR_ss, debt_service_ss) # Compute total investment (not just domestic) Iss_total = ((1 + p.g_n_ss) * np.exp(p.g_y) - 1 + p.delta) * Kss # solve resource constraint # net foreign borrowing print('Foreign debt holdings = ', D_f_ss) print('Foreign capital holdings = ', K_f_ss) new_borrowing_f = D_f_ss * (np.exp(p.g_y) * (1 + p.g_n_ss) - 1) debt_service_f = D_f_ss * r_hh_ss RC = aggr.resource_constraint(Yss, Css, Gss, I_d_ss, K_f_ss, new_borrowing_f, debt_service_f, r_hh_ss, p) print('resource constraint: ', RC) if Gss < 0: print('Steady state government spending is negative to satisfy' + ' budget') if ENFORCE_SOLUTION_CHECKS and (np.absolute(RC) > p.mindist_SS): print('Resource Constraint Difference:', RC) err = 'Steady state aggregate resource constraint not satisfied' raise RuntimeError(err) # check constraints household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde) euler_savings = euler_errors[:p.S, :] euler_labor_leisure = euler_errors[p.S:, :] print('Maximum error in labor FOC = ', np.absolute(euler_labor_leisure).max()) print('Maximum error in savings FOC = ', np.absolute(euler_savings).max()) # Return dictionary of SS results output = {'Kss': Kss, 'K_f_ss': K_f_ss, 'K_d_ss': K_d_ss, 'Bss': Bss, 'Lss': Lss, 'Css': Css, 'Iss': Iss, 'Iss_total': Iss_total, 'I_d_ss': I_d_ss, 'nssmat': nssmat, 'Yss': Yss, 'Dss': Dss, 'D_f_ss': D_f_ss, 'D_d_ss': D_d_ss, 'wss': wss, 'rss': rss, 'r_gov_ss': r_gov_ss, 'r_hh_ss': r_hh_ss, 'theta': theta, 'BQss': BQss, 'factor_ss': factor_ss, 'bssmat_s': bssmat_s, 'cssmat': cssmat, 'bssmat_splus1': bssmat_splus1, 'yss_before_tax_mat': yss_before_tax_mat, 'bqssmat': bqssmat, 'TR_ss': TR_ss, 'trssmat': trssmat, 'Gss': Gss, 'total_revenue_ss': total_revenue_ss, 'business_revenue': business_revenue, 'IITpayroll_revenue': T_Iss, 'T_Pss': T_Pss, 'T_BQss': T_BQss, 'T_Wss': T_Wss, 'T_Css': T_Css, 'euler_savings': euler_savings, 'debt_service_f': debt_service_f, 'new_borrowing_f': new_borrowing_f, 'debt_service_ss': debt_service_ss, 'new_borrowing': new_borrowing, 'euler_labor_leisure': euler_labor_leisure, 'resource_constraint_error': RC, 'etr_ss': etr_ss, 'mtrx_ss': mtrx_ss, 'mtry_ss': mtry_ss} return output
def SS_solver(bmat, nmat, r, BQ, T_H, factor, Y, p, client, fsolve_flag=False): ''' -------------------------------------------------------------------- Solves for the steady state distribution of capital, labor, as well as w, r, T_H and the scaling factor, using a bisection method similar to TPI. -------------------------------------------------------------------- INPUTS: b_guess_init = [S,J] array, initial guesses for savings n_guess_init = [S,J] array, initial guesses for labor supply wguess = scalar, initial guess for SS real wage rate rguess = scalar, initial guess for SS real interest rate T_Hguess = scalar, initial guess for lump sum transfer factorguess = scalar, initial guess for scaling factor to dollars chi_b = [J,] vector, chi^b_j, the utility weight on bequests chi_n = [S,] vector, chi^n_s utility weight on labor supply params = length X tuple, list of parameters iterative_params = length X tuple, list of parameters that determine the convergence of the while loop tau_bq = [J,] vector, bequest tax rate rho = [S,] vector, mortality rates by age lambdas = [J,] vector, fraction of population with each ability type omega = [S,] vector, stationary population weights e = [S,J] array, effective labor units by age and ability type OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: euler_equation_solver() aggr.get_K() aggr.get_L() firm.get_Y() firm.get_r() firm.get_w() aggr.get_BQ() tax.replacement_rate_vals() aggr.revenue() utils.convex_combo() utils.pct_diff_func() OBJECTS CREATED WITHIN FUNCTION: b_guess = [S,] vector, initial guess at household savings n_guess = [S,] vector, initial guess at household labor supply b_s = [S,] vector, wealth enter period with b_splus1 = [S,] vector, household savings b_splus2 = [S,] vector, household savings one period ahead BQ = scalar, aggregate bequests to lifetime income group theta = scalar, replacement rate for social security benenfits error1 = [S,] vector, errors from FOC for savings error2 = [S,] vector, errors from FOC for labor supply tax1 = [S,] vector, total income taxes paid cons = [S,] vector, household consumption OBJECTS CREATED WITHIN FUNCTION - SMALL OPEN ONLY Bss = scalar, aggregate household wealth in the steady state BIss = scalar, aggregate household net investment in the steady state RETURNS: solutions = steady state values of b, n, w, r, factor, T_H ((2*S*J+4)x1 array) OUTPUT: None -------------------------------------------------------------------- ''' # Rename the inputs if not p.budget_balance: if not p.baseline_spending: Y = T_H / p.alpha_T[-1] if p.small_open: r = p.hh_r[-1] dist = 10 iteration = 0 dist_vec = np.zeros(p.maxiter) maxiter_ss = p.maxiter nu_ss = p.nu if fsolve_flag: maxiter_ss = 1 while (dist > p.mindist_SS) and (iteration < maxiter_ss): # Solve for the steady state levels of b and n, given w, r, # Y and factor if p.budget_balance: outer_loop_vars = (bmat, nmat, r, BQ, T_H, factor) else: outer_loop_vars = (bmat, nmat, r, BQ, Y, T_H, factor) (euler_errors, new_bmat, new_nmat, new_r, new_r_gov, new_r_hh, new_w, new_T_H, new_Y, new_factor, new_BQ, average_income_model) =\ inner_loop(outer_loop_vars, p, client) r = utils.convex_combo(new_r, r, nu_ss) factor = utils.convex_combo(new_factor, factor, nu_ss) BQ = utils.convex_combo(new_BQ, BQ, nu_ss) # bmat = utils.convex_combo(new_bmat, bmat, nu_ss) # nmat = utils.convex_combo(new_nmat, nmat, nu_ss) if p.budget_balance: T_H = utils.convex_combo(new_T_H, T_H, nu_ss) dist = np.array([utils.pct_diff_func(new_r, r)] + list(utils.pct_diff_func(new_BQ, BQ)) + [utils.pct_diff_func(new_T_H, T_H)] + [utils.pct_diff_func(new_factor, factor)]).max() else: Y = utils.convex_combo(new_Y, Y, nu_ss) if Y != 0: dist = np.array([utils.pct_diff_func(new_r, r)] + list(utils.pct_diff_func(new_BQ, BQ)) + [utils.pct_diff_func(new_Y, Y)] + [utils.pct_diff_func(new_factor, factor)]).max() else: # If Y is zero (if there is no output), a percent difference # will throw NaN's, so we use an absoluate difference dist = np.array([utils.pct_diff_func(new_r, r)] + list(utils.pct_diff_func(new_BQ, BQ)) + [abs(new_Y - Y)] + [utils.pct_diff_func(new_factor, factor)]).max() dist_vec[iteration] = dist # Similar to TPI: if the distance between iterations increases, then # decrease the value of nu to prevent cycling if iteration > 10: if dist_vec[iteration] - dist_vec[iteration - 1] > 0: nu_ss /= 2.0 print('New value of nu:', nu_ss) iteration += 1 print('Iteration: %02d' % iteration, ' Distance: ', dist) ''' ------------------------------------------------------------------------ Generate the SS values of variables, including euler errors ------------------------------------------------------------------------ ''' bssmat_s = np.append(np.zeros((1, p.J)), bmat[:-1, :], axis=0) bssmat_splus1 = bmat nssmat = nmat rss = r r_gov_ss = fiscal.get_r_gov(rss, p) if p.budget_balance: r_hh_ss = rss debt_ss = 0.0 else: debt_ss = p.debt_ratio_ss * Y Lss = aggr.get_L(nssmat, p, 'SS') if not p.small_open: Bss = aggr.get_K(bssmat_splus1, p, 'SS', False) Kss = Bss - debt_ss Iss = aggr.get_I(bssmat_splus1, Kss, Kss, p, 'SS') else: # Compute capital (K) and wealth (B) separately Kss = firm.get_K(Lss, p.firm_r[-1], p, 'SS') InvestmentPlaceholder = np.zeros(bssmat_splus1.shape) Iss = aggr.get_I(InvestmentPlaceholder, Kss, Kss, p, 'SS') Bss = aggr.get_K(bssmat_splus1, p, 'SS', False) BIss = aggr.get_I(bssmat_splus1, Bss, Bss, p, 'BI_SS') if p.budget_balance: r_hh_ss = rss else: r_hh_ss = aggr.get_r_hh(rss, r_gov_ss, Kss, debt_ss) if p.small_open: r_hh_ss = p.hh_r[-1] wss = new_w BQss = new_BQ factor_ss = factor T_Hss = T_H bqssmat = household.get_bq(BQss, None, p, 'SS') Yss = firm.get_Y(Kss, Lss, p, 'SS') theta = tax.replacement_rate_vals(nssmat, wss, factor_ss, None, p) # Compute effective and marginal tax rates for all agents etr_params_3D = np.tile(np.reshape( p.etr_params[-1, :, :], (p.S, 1, p.etr_params.shape[2])), (1, p.J, 1)) mtrx_params_3D = np.tile(np.reshape( p.mtrx_params[-1, :, :], (p.S, 1, p.mtrx_params.shape[2])), (1, p.J, 1)) mtry_params_3D = np.tile(np.reshape( p.mtry_params[-1, :, :], (p.S, 1, p.mtry_params.shape[2])), (1, p.J, 1)) mtry_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, True, p.e, etr_params_3D, mtry_params_3D, p) mtrx_ss = tax.MTR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, False, p.e, etr_params_3D, mtrx_params_3D, p) etr_ss = tax.ETR_income(r_hh_ss, wss, bssmat_s, nssmat, factor, p.e, etr_params_3D, p) taxss = tax.total_taxes(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, factor_ss, T_Hss, theta, None, None, False, 'SS', p.e, etr_params_3D, p) cssmat = household.get_cons(r_hh_ss, wss, bssmat_s, bssmat_splus1, nssmat, bqssmat, taxss, p.e, p.tau_c[-1, :, :], p) Css = aggr.get_C(cssmat, p, 'SS') (total_revenue_ss, T_Iss, T_Pss, T_BQss, T_Wss, T_Css, business_revenue) =\ aggr.revenue(r_hh_ss, wss, bssmat_s, nssmat, bqssmat, cssmat, Yss, Lss, Kss, factor, theta, etr_params_3D, p, 'SS') debt_service_ss = r_gov_ss * p.debt_ratio_ss * Yss new_borrowing = p.debt_ratio_ss * Yss * ((1 + p.g_n_ss) * np.exp(p.g_y) - 1) # government spends such that it expands its debt at the same rate as GDP if p.budget_balance: Gss = 0.0 else: Gss = total_revenue_ss + new_borrowing - (T_Hss + debt_service_ss) print('G components = ', new_borrowing, T_Hss, debt_service_ss) # Compute total investment (not just domestic) Iss_total = p.delta * Kss # solve resource constraint if p.small_open: # include term for current account resource_constraint = (Yss + new_borrowing - (Css + BIss + Gss) + (p.hh_r[-1] * Bss - (p.delta + p.firm_r[-1]) * Kss - debt_service_ss)) print('Yss= ', Yss, '\n', 'Css= ', Css, '\n', 'Bss = ', Bss, '\n', 'BIss = ', BIss, '\n', 'Kss = ', Kss, '\n', 'Iss = ', Iss, '\n', 'Lss = ', Lss, '\n', 'T_H = ', T_H, '\n', 'Gss= ', Gss) print('D/Y:', debt_ss / Yss, 'T/Y:', T_Hss / Yss, 'G/Y:', Gss / Yss, 'Rev/Y:', total_revenue_ss / Yss, 'Int payments to GDP:', (r_gov_ss * debt_ss) / Yss) print('resource constraint: ', resource_constraint) else: resource_constraint = Yss - (Css + Iss + Gss) print('Yss= ', Yss, '\n', 'Gss= ', Gss, '\n', 'Css= ', Css, '\n', 'Kss = ', Kss, '\n', 'Iss = ', Iss, '\n', 'Lss = ', Lss, '\n', 'Debt service = ', debt_service_ss) print('D/Y:', debt_ss / Yss, 'T/Y:', T_Hss / Yss, 'G/Y:', Gss / Yss, 'Rev/Y:', total_revenue_ss / Yss, 'business rev/Y: ', business_revenue / Yss, 'Int payments to GDP:', (r_gov_ss * debt_ss) / Yss) print('Check SS budget: ', Gss - (np.exp(p.g_y) * (1 + p.g_n_ss) - 1 - r_gov_ss) * debt_ss - total_revenue_ss + T_Hss) print('resource constraint: ', resource_constraint) if Gss < 0: print('Steady state government spending is negative to satisfy' + ' budget') if ENFORCE_SOLUTION_CHECKS and (np.absolute(resource_constraint) > p.mindist_SS): print('Resource Constraint Difference:', resource_constraint) err = 'Steady state aggregate resource constraint not satisfied' raise RuntimeError(err) # check constraints household.constraint_checker_SS(bssmat_splus1, nssmat, cssmat, p.ltilde) euler_savings = euler_errors[:p.S, :] euler_labor_leisure = euler_errors[p.S:, :] print('Maximum error in labor FOC = ', np.absolute(euler_labor_leisure).max()) print('Maximum error in savings FOC = ', np.absolute(euler_savings).max()) ''' ------------------------------------------------------------------------ Return dictionary of SS results ------------------------------------------------------------------------ ''' output = {'Kss': Kss, 'Bss': Bss, 'Lss': Lss, 'Css': Css, 'Iss': Iss, 'Iss_total': Iss_total, 'nssmat': nssmat, 'Yss': Yss, 'Dss': debt_ss, 'wss': wss, 'rss': rss, 'r_gov_ss': r_gov_ss, 'r_hh_ss': r_hh_ss, 'theta': theta, 'BQss': BQss, 'factor_ss': factor_ss, 'bssmat_s': bssmat_s, 'cssmat': cssmat, 'bssmat_splus1': bssmat_splus1, 'bqssmat': bqssmat, 'T_Hss': T_Hss, 'Gss': Gss, 'total_revenue_ss': total_revenue_ss, 'business_revenue': business_revenue, 'IITpayroll_revenue': T_Iss, 'T_Pss': T_Pss, 'T_BQss': T_BQss, 'T_Wss': T_Wss, 'T_Css': T_Css, 'euler_savings': euler_savings, 'euler_labor_leisure': euler_labor_leisure, 'resource_constraint_error': resource_constraint, 'etr_ss': etr_ss, 'mtrx_ss': mtrx_ss, 'mtry_ss': mtry_ss} return output