示例#1
0
def igridding_simple(grid_info, loncorn, latcorn, vals, errors=None, weights=None, is_flag=False):
    """
    Interface method that applies CVM gridding to a simple set of data defined in 2D numpy arrays
    :param grid_info: a dictionary that can be given to omi.Grid as omi.Grid(**grid_info)
    :param loncorn: the longitude corner coordinates of the data to grid as a 3D numpy array; assumes that the corners
     are given along the first dimension, i.e. loncorn[:,i,j] is the slice with the corner coordinates for pixel i, j
    :param latcorn: the latitude corner coordinate of the data to grid as a 3D numpy array; same format as loncorn.
    :param vals: the values to grid as a 2D numpy array
    :return: a 2D numpy array with the values gridded to the lon/lat coordinates defined in grid and a 2D numpy array
    with the weighting values
    """

    if errors is None:
        errors = np.zeros_like(vals)
    if weights is None:
        weights = np.ones_like(vals)

    vals, errors, weights, mask = simple_preprocessing(vals, errors, weights)

    grid_in = omi.Grid(**grid_info)

    grid = omi.cvm_grid(grid_in, loncorn, latcorn, vals, errors, weights, mask, is_flag=is_flag)

    # For now, unlike the normal gridding method, we will retain NaNs in the gridded values and weights
    grid_weights = grid.weights
    grid.norm()
    grid_values = grid.values

    return grid_values, grid_weights
示例#2
0
文件: OMNO2_Trop.py 项目: gkuhl/omi
def main(start_date, end_date, gridding_method, grid_name, data_path):

    # 1. Define a grid
    # (a) by giving lower-left and upper-right corner
    grid = omi.Grid(
        llcrnrlat=19.6, urcrnrlat=25.6,
        llcrnrlon=108.8, urcrnrlon=117.6, resolution=0.01
    )
    # (b) or by reading this data from a JSON file
    #    (the default file can be found in omi/data/gridds.json)
    grid = omi.Grid.by_name(grid_name)

    # 2. Define parameter for PSM
    #    - gamma (smoothing parameter)
    #    - rho_est (typical maximum value of distribution)
    rho_est = 4e16
    if gridding_method == 'psm':
        # gamma is computed as function of pixel overlap
        gamma = omi.compute_smoothing_parameter(1.0, 10.0)

    # 3. Define a mapping which maps a key to the path in the
    #    HDF file. The function
    #    >>> omi.he5.create_name2dataset(path, list_of_dataset_names, dict)
    #    can be helpful (see above).
    name2datasets = [NAME2DATASET_NO2, NAME2DATASET_PIXEL]

    # 4a) data in OMI files can be read by
    # >>> data = omi.he5.read_datasets(filename, name2dataset)

    # 4b) or by iterating over orbits from start to end date at the following
    #   location: 
    #       os.path.join(data_path, product, 'level2', year, doy, '*.he5')
    #
    #   (see omi.he5 module for details)
    products = ['OMNO2.003', 'OMPIXCOR.003']
    for timestamp, orbit, data in omi.he5.iter_orbits(
            start_date, end_date, products, name2datasets, data_path
        ):

        # 5) Check for missing corner coordinates, i.e. the zoom product,
        #    which is currently not supported
        if (data['TiledCornerLongitude'].mask.any() or
            data['TiledCornerLatitude'].mask.any()
        ):
            continue

        # 6) Clip orbit to grid domain
        lon = data['FoV75CornerLongitude']
        lat = data['FoV75CornerLatitude']
        data = omi.clip_orbit(grid, lon, lat, data, boundary=(2,2))

        if data['ColumnAmountNO2Trop'].size == 0:
            continue

        # 7) Use a self-written function to preprocess the OMI data and
        #    to create the following arrays MxN:
        #    - measurement values 
        #    - measurement errors (currently only CVM grids errors)
        #    - estimate of stddev (used in PSM)
        #    - weight of each measurement
        #    (see the function preprocessing for an example)
        values, errors, stddev, weights = preprocessing(gridding_method, **data)
        missing_values = values.mask.copy()

        if np.all(values.mask):
            continue


        # 8) Grid orbit using PSM or CVM:
        print 'time: %s, orbit: %d' % (timestamp, orbit)
        if gridding_method == 'psm':
            grid = omi.psm_grid(grid,
                data['Longitude'], data['Latitude'],
                data['TiledCornerLongitude'], data['TiledCornerLatitude'],
                values, errors, stddev, weights, missing_values,
                data['SpacecraftLongitude'], data['SpacecraftLatitude'],
                data['SpacecraftAltitude'],
                gamma[data['ColumnIndices']],
                rho_est
            )
        else:
            grid = omi.cvm_grid(grid, data['FoV75CornerLongitude'], data['FoV75CornerLatitude'],
            values, errors, weights, missing_values)


    # 9) The distribution of values and errors has to be normalised
    #    with the weight.
    grid.norm()

    # 10) The Level 3 product can be saved as HDF5 file
    #     or converted to an image (requires matplotlib and basemap)
    grid.save_as_he5('test_%s.he5' % gridding_method)
    grid.save_as_image('test_%s.png' % gridding_method, vmin=0, vmax=rho_est)

    # 11) It is possible to set values, errors and weights to zero.
    grid.zero()
示例#3
0
def igridding_simple(grid_info,
                     loncorn,
                     latcorn,
                     vals,
                     errors=None,
                     weights=None,
                     is_flag=False):
    """
    Interface method that applies CVM gridding to a simple set of data defined in 2D numpy arrays
    :param grid_info: a dictionary that can be given to omi.Grid as omi.Grid(**grid_info)
    :param loncorn: the longitude corner coordinates of the data to grid as a 3D numpy array; assumes that the corners
     are given along the first dimension, i.e. loncorn[:,i,j] is the slice with the corner coordinates for pixel i, j
    :param latcorn: the latitude corner coordinate of the data to grid as a 3D numpy array; same format as loncorn.
    :param vals: the values to grid as a 2D numpy array
    :return: a 2D numpy array with the values gridded to the lon/lat coordinates defined in grid and a 2D numpy array
    with the weighting values
    """

    if errors is None:
        errors = np.zeros_like(vals)
    if weights is None:
        weights = np.ones_like(vals)

    if vals.ndim == 3:
        print('Doing 3D gridding')
        n_levels = vals.shape[2]
        for i_lev in range(n_levels):
            grid_val_i, grid_wt_i = igridding_simple(grid_info,
                                                     loncorn,
                                                     latcorn,
                                                     vals[:, :, i_lev],
                                                     errors=errors[:, :,
                                                                   i_lev],
                                                     weights=weights[:, :,
                                                                     i_lev],
                                                     is_flag=is_flag)
            if i_lev == 0:
                grid_values = np.full(grid_val_i.shape + (n_levels, ),
                                      np.nan,
                                      dtype=grid_val_i.dtype)
                grid_weights = np.full(grid_wt_i.shape + (n_levels, ),
                                       np.nan,
                                       dtype=grid_val_i.dtype)

            grid_values[:, :, i_lev] = grid_val_i
            grid_weights[:, :, i_lev] = grid_wt_i
    else:

        vals, errors, weights, mask = simple_preprocessing(
            vals, errors, weights)

        grid_in = omi.Grid(**grid_info)

        grid = omi.cvm_grid(grid_in,
                            loncorn,
                            latcorn,
                            vals,
                            errors,
                            weights,
                            mask,
                            is_flag=is_flag)

        # For now, unlike the normal gridding method, we will retain NaNs in the gridded values and weights
        grid_weights = grid.weights
        grid.norm()
        grid_values = grid.values

    return grid_values, grid_weights
示例#4
0
def grid_orbit(data,
               grid_info,
               gridded_quantity,
               gridding_method='psm',
               preproc_method='generic',
               verbosity=0):
    # Input checking
    if not isinstance(data, dict):
        raise TypeError('data must be a dict')
    elif gridded_quantity not in data.keys():
        raise KeyError(
            'data does not have a key matching the gridded_quantity "{}"'.
            format(gridded_quantity))
    else:
        missing_keys = [
            k for k in behr_datasets(gridding_method) if k not in data.keys()
        ]
        if len(missing_keys) > 0:
            raise KeyError(
                'data is missing the following expected keys: {0}'.format(
                    ', '.join(missing_keys)))

    grid = make_grid(grid_info)
    wgrid = make_grid(grid_info)

    # 5) Check for missing corner coordinates, i.e. the zoom product,
    #    which is currently not supported
    if data['TiledCornerLongitude'].mask.any(
    ) or data['TiledCornerLatitude'].mask.any():
        return None, None

    # 6) Clip orbit to grid domain
    lon = data['FoV75CornerLongitude']
    lat = data['FoV75CornerLatitude']
    data = omi.clip_orbit(grid, lon, lat, data, boundary=(2, 2))

    if data['BEHRColumnAmountNO2Trop'].size == 0:
        return None, None

    # Preprocess the BEHR data to create the following arrays MxN:
    #    - measurement values
    #    - measurement errors (used in CVM, not PSM)
    #    - estimate of stddev (used in PSM)
    #    - weight of each measurement
    if verbosity > 1:
        print('    Doing {} preprocessing for {}'.format(
            preproc_method, gridded_quantity))
    if preproc_method.lower() == 'behr':
        values, errors, stddev, weights = behr_preprocessing(
            gridding_method, **data)
    elif preproc_method.lower() == 'sp':
        values, errors, stddev, weights = sp_preprocessing(
            gridding_method, **data)
    elif preproc_method.lower() == 'generic':
        # I'm copying the values before passing them because I intend this to be able to called multiple times to grid
        # different fields, and I don't want to risk values in data being altered.
        values, errors, stddev, weights = generic_preprocessing(
            gridding_method, gridded_quantity, data[gridded_quantity].copy(),
            **data)
    else:
        raise NotImplementedError(
            'No preprocessing option for column_product={}'.format(
                gridded_quantity))

    missing_values = values.mask.copy()

    if np.all(values.mask):
        return None, None  # two outputs expected, causes a "None object not iterable" error if only one given

    new_weight = weights  # JLL 9 Aug 2017 - Seems unnecessary now

    if verbosity > 1:
        print('    Gridding {}'.format(gridded_quantity))

    is_flag_field = gridded_quantity in flag_fields

    if gridding_method == 'psm':
        gamma = omi.compute_smoothing_parameter(40.0, 40.0)
        rho_est = np.max(new_weight) * 1.2
        if verbosity > 1:
            print('    Gridding weights')

        try:
            wgrid = omi.psm_grid(wgrid, data['Longitude'], data['Latitude'],
                                 data['TiledCornerLongitude'],
                                 data['TiledCornerLatitude'], new_weight,
                                 errors, new_weight * 0.9, weights,
                                 missing_values, data['SpacecraftLongitude'],
                                 data['SpacecraftLatitude'],
                                 data['SpacecraftAltitude'],
                                 gamma[data['ColumnIndices']], rho_est)
            # The 90% of new_weight = std. dev. is a best guess comparing uncertainty
            # over land and sea
        except QhullError as err:
            print("Cannot interpolate, QhullError: {0}".format(err.args[0]))
            return None, None

        rho_est = np.max(values) * 1.2
        gamma = omi.compute_smoothing_parameter(1.0, 10.0)
        try:
            grid = omi.psm_grid(grid, data['Longitude'], data['Latitude'],
                                data['TiledCornerLongitude'],
                                data['TiledCornerLatitude'], values, errors,
                                stddev, weights, missing_values,
                                data['SpacecraftLongitude'],
                                data['SpacecraftLatitude'],
                                data['SpacecraftAltitude'],
                                gamma[data['ColumnIndices']], rho_est)
        except QhullError as err:
            print("Cannot interpolate, QhullError: {0}".format(err.args[0]))
            return None, None

        grid.norm(
        )  # divides by the weights (at this point, the values in the grid are multiplied by the weights)
        # Replace by new weights in a bit
        wgrid.norm()  # in the new version, wgrid is also normalized.

        # Clip the weights so that only positive weights are allowed. Converting things back to np.array removes any
        # masking
        wgrid.values = np.clip(np.array(wgrid.values), 0.01,
                               np.max(np.array(wgrid.values)))

        wgrid_values = np.array(wgrid.values)
        grid_values = np.array(grid.values)
    elif gridding_method == 'cvm':
        try:
            grid = omi.cvm_grid(grid,
                                data['FoV75CornerLongitude'],
                                data['FoV75CornerLatitude'],
                                values,
                                errors,
                                weights,
                                missing_values,
                                is_flag=is_flag_field)
        except QhullError as err:
            print("Cannot interpolate, QhullError: {0}".format(err.args[0]))
            return None, None

        if not is_flag_field:
            wgrid_values = grid.weights
            grid.norm()
        else:
            wgrid_values = np.ones_like(grid.values)
        grid_values = grid.values
    else:
        raise NotImplementedError(
            'gridding method {0} not understood'.format(gridding_method))

    # At this point, grid.values is a numpy array, not a masked array. Using nan_to_num should also automatically set
    # the value to 0, but that doesn't guarantee that the same values in weights will be made 0. So we manually multiply
    # the weights by 0 for any invalid values in the NO2 grid. This prevents reducing the final column when we divide by
    # the total weights outside this function.
    good_values = ~np.ma.masked_invalid(grid_values).mask
    grid_values = np.nan_to_num(grid_values)
    wgrid_values = np.nan_to_num(wgrid_values) * good_values
    return grid_values, wgrid_values
示例#5
0
def main(start_date, end_date, gridding_method, grid_name, data_path):

    # 1. Define a grid
    # (a) by giving lower-left and upper-right corner
    #grid_name = "NewAsia"
    #grid = omi.Grid(llcrnrlat=40.0, urcrnrlat=55.0,llcrnrlon=-5.0, urcrnrlon=20.0, resolution=0.002); grid_name = 'Germany'#7500*12500
    #grid = omi.Grid(llcrnrlat= 17.8 , urcrnrlat=53.6 ,llcrnrlon=96.9 , urcrnrlon= 106.8, resolution=0.01); #grid_name = 'Northamerica'#6000*4000
    grid = omi.Grid(llcrnrlat=25,
                    urcrnrlat=50.05,
                    llcrnrlon=-125,
                    urcrnrlon=-64.95,
                    resolution=0.05)
    #grid_name = 'Northamerica'#6000*4000
    # (b) or by reading this data from a JSON file
    #    (the default file can be found in omi/data/gridds.json)
    #grid = omi.Grid.by_name(grid_name)

    # 2. Define parameter for PSM
    #    - gamma (smoothing parameter)
    #    - rho_est (typical maximum value of distribution)
    rho_est = 4e16
    if gridding_method == 'psm':
        # gamma is computed as function of pixel overlap
        gamma = omi.compute_smoothing_parameter(1.0, 10.0)

    # 3. Define a mapping which maps a key to the path in the
    #    HDF file. The function
    #    >>> omi.he5.create_name2dataset(path, list_of_dataset_names, dict)
    #    can be helpful (see above).
    name2datasets = [NAME2DATASET_NO2, NAME2DATASET_PIXEL]

    # 4a) data in OMI files can be read by
    # >>> data = omi.he5.read_datasets(filename, name2dataset)

    # 4b) or by iterating over orbits from start to end date at the following
    #   location:
    #       os.path.join(data_path, product, 'level2', year, doy, '*.he5')
    #
    #   (see omi.he5 module for details)
    products = ['OMNO2.003', 'OMPIXCOR.003']  #part of the path
    for timestamp, orbit, data in omi.he5.iter_orbits(start_date, end_date,
                                                      products, name2datasets,
                                                      data_path):

        # debugging check: this loop is occasionally getting what I consider night time swaths that just barely cross
        # the top of the domain. I deliberately remove those, even though they may be illuminated
        print 'timestamp =', timestamp
        if timestamp.hour < 15:
            continue

        # 5) Check for missing corner coordinates, i.e. the zoom product,
        #    which is currently not supported
        if (data['TiledCornerLongitude'].mask.any()
                or data['TiledCornerLatitude'].mask.any()):
            continue

        # 6) Clip orbit to grid domain
        lon = data['FoV75CornerLongitude']
        lat = data['FoV75CornerLatitude']
        data = omi.clip_orbit(grid, lon, lat, data, boundary=(2, 2))

        if data['ColumnAmountNO2Trop'].size == 0:
            continue

        # 7) Use a self-written function to preprocess the OMI data and
        #    to create the following arrays MxN:
        #    - measurement values
        #    - measurement errors (currently only CVM grids errors)
        #    - estimate of stddev (used in PSM)
        #    - weight of each measurement
        #    (see the function preprocessing for an example)
        values, errors, stddev, weights = preprocessing(
            gridding_method, **data)
        missing_values = values.mask.copy()

        if np.all(values.mask):
            continue

        # 8) Grid orbit using PSM or CVM:
        print 'time: %s, orbit: %d' % (timestamp, orbit)
        if gridding_method == 'psm':
            grid = omi.psm_grid(grid, data['Longitude'], data['Latitude'],
                                data['TiledCornerLongitude'],
                                data['TiledCornerLatitude'], values, errors,
                                stddev, weights, missing_values,
                                data['SpacecraftLongitude'],
                                data['SpacecraftLatitude'],
                                data['SpacecraftAltitude'],
                                gamma[data['ColumnIndices']], rho_est)
        else:
            grid = omi.cvm_grid(grid, data['FoV75CornerLongitude'],
                                data['FoV75CornerLatitude'], values, errors,
                                weights, missing_values)

    # 9) The distribution of values and errors has to be normalised
    #    with the weight.
    grid.norm()

    # 10) The Level 3 product can be saved as HDF5 file
    #     or converted to an image (requires matplotlib and basemap
    grid.save_as_he5('%s_%s_%s_%s_%s.he5' %
                     (grid_name, str(start_date)[8:10], str(start_date)[5:7],
                      str(start_date)[0:4], gridding_method))
    grid.save_as_image('%s_%s_%s_%s_%s.png' %
                       (grid_name, str(start_date)[8:10], str(start_date)[5:7],
                        str(start_date)[0:4], gridding_method),
                       vmin=0,
                       vmax=1e16)
    #grid.save_as_image('%s_%s_%s_%s_%s.he5' % ( str(start_date)[8:10],  str(start_date)[5:7],  str(start_date)[0:4], grid_name, gridding_method), vmin=0, vmax=rho_est)

    # 11) It is possible to set values, errors and weights to zero.
    grid.zero()