def igridding_simple(grid_info, loncorn, latcorn, vals, errors=None, weights=None, is_flag=False): """ Interface method that applies CVM gridding to a simple set of data defined in 2D numpy arrays :param grid_info: a dictionary that can be given to omi.Grid as omi.Grid(**grid_info) :param loncorn: the longitude corner coordinates of the data to grid as a 3D numpy array; assumes that the corners are given along the first dimension, i.e. loncorn[:,i,j] is the slice with the corner coordinates for pixel i, j :param latcorn: the latitude corner coordinate of the data to grid as a 3D numpy array; same format as loncorn. :param vals: the values to grid as a 2D numpy array :return: a 2D numpy array with the values gridded to the lon/lat coordinates defined in grid and a 2D numpy array with the weighting values """ if errors is None: errors = np.zeros_like(vals) if weights is None: weights = np.ones_like(vals) vals, errors, weights, mask = simple_preprocessing(vals, errors, weights) grid_in = omi.Grid(**grid_info) grid = omi.cvm_grid(grid_in, loncorn, latcorn, vals, errors, weights, mask, is_flag=is_flag) # For now, unlike the normal gridding method, we will retain NaNs in the gridded values and weights grid_weights = grid.weights grid.norm() grid_values = grid.values return grid_values, grid_weights
def main(start_date, end_date, gridding_method, grid_name, data_path): # 1. Define a grid # (a) by giving lower-left and upper-right corner grid = omi.Grid( llcrnrlat=19.6, urcrnrlat=25.6, llcrnrlon=108.8, urcrnrlon=117.6, resolution=0.01 ) # (b) or by reading this data from a JSON file # (the default file can be found in omi/data/gridds.json) grid = omi.Grid.by_name(grid_name) # 2. Define parameter for PSM # - gamma (smoothing parameter) # - rho_est (typical maximum value of distribution) rho_est = 4e16 if gridding_method == 'psm': # gamma is computed as function of pixel overlap gamma = omi.compute_smoothing_parameter(1.0, 10.0) # 3. Define a mapping which maps a key to the path in the # HDF file. The function # >>> omi.he5.create_name2dataset(path, list_of_dataset_names, dict) # can be helpful (see above). name2datasets = [NAME2DATASET_NO2, NAME2DATASET_PIXEL] # 4a) data in OMI files can be read by # >>> data = omi.he5.read_datasets(filename, name2dataset) # 4b) or by iterating over orbits from start to end date at the following # location: # os.path.join(data_path, product, 'level2', year, doy, '*.he5') # # (see omi.he5 module for details) products = ['OMNO2.003', 'OMPIXCOR.003'] for timestamp, orbit, data in omi.he5.iter_orbits( start_date, end_date, products, name2datasets, data_path ): # 5) Check for missing corner coordinates, i.e. the zoom product, # which is currently not supported if (data['TiledCornerLongitude'].mask.any() or data['TiledCornerLatitude'].mask.any() ): continue # 6) Clip orbit to grid domain lon = data['FoV75CornerLongitude'] lat = data['FoV75CornerLatitude'] data = omi.clip_orbit(grid, lon, lat, data, boundary=(2,2)) if data['ColumnAmountNO2Trop'].size == 0: continue # 7) Use a self-written function to preprocess the OMI data and # to create the following arrays MxN: # - measurement values # - measurement errors (currently only CVM grids errors) # - estimate of stddev (used in PSM) # - weight of each measurement # (see the function preprocessing for an example) values, errors, stddev, weights = preprocessing(gridding_method, **data) missing_values = values.mask.copy() if np.all(values.mask): continue # 8) Grid orbit using PSM or CVM: print 'time: %s, orbit: %d' % (timestamp, orbit) if gridding_method == 'psm': grid = omi.psm_grid(grid, data['Longitude'], data['Latitude'], data['TiledCornerLongitude'], data['TiledCornerLatitude'], values, errors, stddev, weights, missing_values, data['SpacecraftLongitude'], data['SpacecraftLatitude'], data['SpacecraftAltitude'], gamma[data['ColumnIndices']], rho_est ) else: grid = omi.cvm_grid(grid, data['FoV75CornerLongitude'], data['FoV75CornerLatitude'], values, errors, weights, missing_values) # 9) The distribution of values and errors has to be normalised # with the weight. grid.norm() # 10) The Level 3 product can be saved as HDF5 file # or converted to an image (requires matplotlib and basemap) grid.save_as_he5('test_%s.he5' % gridding_method) grid.save_as_image('test_%s.png' % gridding_method, vmin=0, vmax=rho_est) # 11) It is possible to set values, errors and weights to zero. grid.zero()
def igridding_simple(grid_info, loncorn, latcorn, vals, errors=None, weights=None, is_flag=False): """ Interface method that applies CVM gridding to a simple set of data defined in 2D numpy arrays :param grid_info: a dictionary that can be given to omi.Grid as omi.Grid(**grid_info) :param loncorn: the longitude corner coordinates of the data to grid as a 3D numpy array; assumes that the corners are given along the first dimension, i.e. loncorn[:,i,j] is the slice with the corner coordinates for pixel i, j :param latcorn: the latitude corner coordinate of the data to grid as a 3D numpy array; same format as loncorn. :param vals: the values to grid as a 2D numpy array :return: a 2D numpy array with the values gridded to the lon/lat coordinates defined in grid and a 2D numpy array with the weighting values """ if errors is None: errors = np.zeros_like(vals) if weights is None: weights = np.ones_like(vals) if vals.ndim == 3: print('Doing 3D gridding') n_levels = vals.shape[2] for i_lev in range(n_levels): grid_val_i, grid_wt_i = igridding_simple(grid_info, loncorn, latcorn, vals[:, :, i_lev], errors=errors[:, :, i_lev], weights=weights[:, :, i_lev], is_flag=is_flag) if i_lev == 0: grid_values = np.full(grid_val_i.shape + (n_levels, ), np.nan, dtype=grid_val_i.dtype) grid_weights = np.full(grid_wt_i.shape + (n_levels, ), np.nan, dtype=grid_val_i.dtype) grid_values[:, :, i_lev] = grid_val_i grid_weights[:, :, i_lev] = grid_wt_i else: vals, errors, weights, mask = simple_preprocessing( vals, errors, weights) grid_in = omi.Grid(**grid_info) grid = omi.cvm_grid(grid_in, loncorn, latcorn, vals, errors, weights, mask, is_flag=is_flag) # For now, unlike the normal gridding method, we will retain NaNs in the gridded values and weights grid_weights = grid.weights grid.norm() grid_values = grid.values return grid_values, grid_weights
def grid_orbit(data, grid_info, gridded_quantity, gridding_method='psm', preproc_method='generic', verbosity=0): # Input checking if not isinstance(data, dict): raise TypeError('data must be a dict') elif gridded_quantity not in data.keys(): raise KeyError( 'data does not have a key matching the gridded_quantity "{}"'. format(gridded_quantity)) else: missing_keys = [ k for k in behr_datasets(gridding_method) if k not in data.keys() ] if len(missing_keys) > 0: raise KeyError( 'data is missing the following expected keys: {0}'.format( ', '.join(missing_keys))) grid = make_grid(grid_info) wgrid = make_grid(grid_info) # 5) Check for missing corner coordinates, i.e. the zoom product, # which is currently not supported if data['TiledCornerLongitude'].mask.any( ) or data['TiledCornerLatitude'].mask.any(): return None, None # 6) Clip orbit to grid domain lon = data['FoV75CornerLongitude'] lat = data['FoV75CornerLatitude'] data = omi.clip_orbit(grid, lon, lat, data, boundary=(2, 2)) if data['BEHRColumnAmountNO2Trop'].size == 0: return None, None # Preprocess the BEHR data to create the following arrays MxN: # - measurement values # - measurement errors (used in CVM, not PSM) # - estimate of stddev (used in PSM) # - weight of each measurement if verbosity > 1: print(' Doing {} preprocessing for {}'.format( preproc_method, gridded_quantity)) if preproc_method.lower() == 'behr': values, errors, stddev, weights = behr_preprocessing( gridding_method, **data) elif preproc_method.lower() == 'sp': values, errors, stddev, weights = sp_preprocessing( gridding_method, **data) elif preproc_method.lower() == 'generic': # I'm copying the values before passing them because I intend this to be able to called multiple times to grid # different fields, and I don't want to risk values in data being altered. values, errors, stddev, weights = generic_preprocessing( gridding_method, gridded_quantity, data[gridded_quantity].copy(), **data) else: raise NotImplementedError( 'No preprocessing option for column_product={}'.format( gridded_quantity)) missing_values = values.mask.copy() if np.all(values.mask): return None, None # two outputs expected, causes a "None object not iterable" error if only one given new_weight = weights # JLL 9 Aug 2017 - Seems unnecessary now if verbosity > 1: print(' Gridding {}'.format(gridded_quantity)) is_flag_field = gridded_quantity in flag_fields if gridding_method == 'psm': gamma = omi.compute_smoothing_parameter(40.0, 40.0) rho_est = np.max(new_weight) * 1.2 if verbosity > 1: print(' Gridding weights') try: wgrid = omi.psm_grid(wgrid, data['Longitude'], data['Latitude'], data['TiledCornerLongitude'], data['TiledCornerLatitude'], new_weight, errors, new_weight * 0.9, weights, missing_values, data['SpacecraftLongitude'], data['SpacecraftLatitude'], data['SpacecraftAltitude'], gamma[data['ColumnIndices']], rho_est) # The 90% of new_weight = std. dev. is a best guess comparing uncertainty # over land and sea except QhullError as err: print("Cannot interpolate, QhullError: {0}".format(err.args[0])) return None, None rho_est = np.max(values) * 1.2 gamma = omi.compute_smoothing_parameter(1.0, 10.0) try: grid = omi.psm_grid(grid, data['Longitude'], data['Latitude'], data['TiledCornerLongitude'], data['TiledCornerLatitude'], values, errors, stddev, weights, missing_values, data['SpacecraftLongitude'], data['SpacecraftLatitude'], data['SpacecraftAltitude'], gamma[data['ColumnIndices']], rho_est) except QhullError as err: print("Cannot interpolate, QhullError: {0}".format(err.args[0])) return None, None grid.norm( ) # divides by the weights (at this point, the values in the grid are multiplied by the weights) # Replace by new weights in a bit wgrid.norm() # in the new version, wgrid is also normalized. # Clip the weights so that only positive weights are allowed. Converting things back to np.array removes any # masking wgrid.values = np.clip(np.array(wgrid.values), 0.01, np.max(np.array(wgrid.values))) wgrid_values = np.array(wgrid.values) grid_values = np.array(grid.values) elif gridding_method == 'cvm': try: grid = omi.cvm_grid(grid, data['FoV75CornerLongitude'], data['FoV75CornerLatitude'], values, errors, weights, missing_values, is_flag=is_flag_field) except QhullError as err: print("Cannot interpolate, QhullError: {0}".format(err.args[0])) return None, None if not is_flag_field: wgrid_values = grid.weights grid.norm() else: wgrid_values = np.ones_like(grid.values) grid_values = grid.values else: raise NotImplementedError( 'gridding method {0} not understood'.format(gridding_method)) # At this point, grid.values is a numpy array, not a masked array. Using nan_to_num should also automatically set # the value to 0, but that doesn't guarantee that the same values in weights will be made 0. So we manually multiply # the weights by 0 for any invalid values in the NO2 grid. This prevents reducing the final column when we divide by # the total weights outside this function. good_values = ~np.ma.masked_invalid(grid_values).mask grid_values = np.nan_to_num(grid_values) wgrid_values = np.nan_to_num(wgrid_values) * good_values return grid_values, wgrid_values
def main(start_date, end_date, gridding_method, grid_name, data_path): # 1. Define a grid # (a) by giving lower-left and upper-right corner #grid_name = "NewAsia" #grid = omi.Grid(llcrnrlat=40.0, urcrnrlat=55.0,llcrnrlon=-5.0, urcrnrlon=20.0, resolution=0.002); grid_name = 'Germany'#7500*12500 #grid = omi.Grid(llcrnrlat= 17.8 , urcrnrlat=53.6 ,llcrnrlon=96.9 , urcrnrlon= 106.8, resolution=0.01); #grid_name = 'Northamerica'#6000*4000 grid = omi.Grid(llcrnrlat=25, urcrnrlat=50.05, llcrnrlon=-125, urcrnrlon=-64.95, resolution=0.05) #grid_name = 'Northamerica'#6000*4000 # (b) or by reading this data from a JSON file # (the default file can be found in omi/data/gridds.json) #grid = omi.Grid.by_name(grid_name) # 2. Define parameter for PSM # - gamma (smoothing parameter) # - rho_est (typical maximum value of distribution) rho_est = 4e16 if gridding_method == 'psm': # gamma is computed as function of pixel overlap gamma = omi.compute_smoothing_parameter(1.0, 10.0) # 3. Define a mapping which maps a key to the path in the # HDF file. The function # >>> omi.he5.create_name2dataset(path, list_of_dataset_names, dict) # can be helpful (see above). name2datasets = [NAME2DATASET_NO2, NAME2DATASET_PIXEL] # 4a) data in OMI files can be read by # >>> data = omi.he5.read_datasets(filename, name2dataset) # 4b) or by iterating over orbits from start to end date at the following # location: # os.path.join(data_path, product, 'level2', year, doy, '*.he5') # # (see omi.he5 module for details) products = ['OMNO2.003', 'OMPIXCOR.003'] #part of the path for timestamp, orbit, data in omi.he5.iter_orbits(start_date, end_date, products, name2datasets, data_path): # debugging check: this loop is occasionally getting what I consider night time swaths that just barely cross # the top of the domain. I deliberately remove those, even though they may be illuminated print 'timestamp =', timestamp if timestamp.hour < 15: continue # 5) Check for missing corner coordinates, i.e. the zoom product, # which is currently not supported if (data['TiledCornerLongitude'].mask.any() or data['TiledCornerLatitude'].mask.any()): continue # 6) Clip orbit to grid domain lon = data['FoV75CornerLongitude'] lat = data['FoV75CornerLatitude'] data = omi.clip_orbit(grid, lon, lat, data, boundary=(2, 2)) if data['ColumnAmountNO2Trop'].size == 0: continue # 7) Use a self-written function to preprocess the OMI data and # to create the following arrays MxN: # - measurement values # - measurement errors (currently only CVM grids errors) # - estimate of stddev (used in PSM) # - weight of each measurement # (see the function preprocessing for an example) values, errors, stddev, weights = preprocessing( gridding_method, **data) missing_values = values.mask.copy() if np.all(values.mask): continue # 8) Grid orbit using PSM or CVM: print 'time: %s, orbit: %d' % (timestamp, orbit) if gridding_method == 'psm': grid = omi.psm_grid(grid, data['Longitude'], data['Latitude'], data['TiledCornerLongitude'], data['TiledCornerLatitude'], values, errors, stddev, weights, missing_values, data['SpacecraftLongitude'], data['SpacecraftLatitude'], data['SpacecraftAltitude'], gamma[data['ColumnIndices']], rho_est) else: grid = omi.cvm_grid(grid, data['FoV75CornerLongitude'], data['FoV75CornerLatitude'], values, errors, weights, missing_values) # 9) The distribution of values and errors has to be normalised # with the weight. grid.norm() # 10) The Level 3 product can be saved as HDF5 file # or converted to an image (requires matplotlib and basemap grid.save_as_he5('%s_%s_%s_%s_%s.he5' % (grid_name, str(start_date)[8:10], str(start_date)[5:7], str(start_date)[0:4], gridding_method)) grid.save_as_image('%s_%s_%s_%s_%s.png' % (grid_name, str(start_date)[8:10], str(start_date)[5:7], str(start_date)[0:4], gridding_method), vmin=0, vmax=1e16) #grid.save_as_image('%s_%s_%s_%s_%s.he5' % ( str(start_date)[8:10], str(start_date)[5:7], str(start_date)[0:4], grid_name, gridding_method), vmin=0, vmax=rho_est) # 11) It is possible to set values, errors and weights to zero. grid.zero()