def _test_eq_float(test_case, shape, device): arr = np.random.randn(*shape) input = flow.Tensor(arr, dtype=flow.float32, device=flow.device(device)) num = 1 of_out = flow.eq(input, num) np_out = np.equal(arr, num) test_case.assertTrue(np.array_equal(of_out.numpy(), np_out))
def _test_eq(test_case, shape, device): arr1 = np.random.randn(*shape) arr2 = np.random.randn(*shape) input = flow.Tensor(arr1, dtype=flow.float32, device=flow.device(device)) other = flow.Tensor(arr2, dtype=flow.float32, device=flow.device(device)) of_out = flow.eq(input, other) of_out2 = flow.equal(input, other) np_out = np.equal(arr1, arr2) test_case.assertTrue(np.array_equal(of_out.numpy(), np_out)) test_case.assertTrue(np.array_equal(of_out2.numpy(), np_out))
def test_eq(test_case): arr1 = np.array([ 2, 3, 4, 5, ]) arr2 = np.array([2, 3, 4, 1]) input = flow.Tensor(arr1, dtype=flow.float32) other = flow.Tensor(arr2, dtype=flow.float32) of_out = flow.eq(input, other) of_out2 = flow.equal(input, other) np_out = np.equal(arr1, arr2) test_case.assertTrue(np.array_equal(of_out.numpy(), np_out)) test_case.assertTrue(np.array_equal(of_out2.numpy(), np_out))