示例#1
0
 def nllloss_1d(self, input, target):
     n = input.shape[0]
     idx = flow.unsqueeze(flow.arange(0, n, 1), dim=1)
     target = flow.unsqueeze(target, dim=1)
     t = flow.cat([idx, target], dim=1)
     res = self._gather_nd_op(input, t)[0]
     return res
示例#2
0
 def _transform_input(self, x: Tensor) -> Tensor:
     if self.transform_input:
         x_ch0 = flow.unsqueeze(x[:, 0],
                                1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
         x_ch1 = flow.unsqueeze(x[:, 1],
                                1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
         x_ch2 = flow.unsqueeze(x[:, 2],
                                1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
         x = flow.cat((x_ch0, x_ch1, x_ch2), 1)
     return x
示例#3
0
def _test_unsqueeze_different_dim(test_case, device):
    np_arr = np.random.rand(4, 5, 6, 7)
    x = flow.tensor(np_arr, dtype=flow.float32, device=flow.device(device))
    for axis in range(-5, 5):
        y = flow.unsqueeze(x, dim=axis)
        output = np.expand_dims(np_arr, axis=axis)
        test_case.assertTrue(np.allclose(output, y.numpy(), 1e-05, 1e-05))
示例#4
0
 def forward(self, x):
     if x.dim() >= 3:
         raise RuntimeError(
             "{} accept 1/2D tensor as input, but got {:d}".format(
                 self.__name__, x.dim()
             )
         )
     # when inference, only one utt
     if x.dim() == 1:
         x = flow.unsqueeze(x, 0)
     # n x 1 x S => n x N x T
     w = F.relu(self.encoder_1d(x))
     # n x B x T
     y = self.proj(self.ln(w))
     # n x B x T
     y = self.repeats(y)
     # n x 2N x T
     e = flow.chunk(self.mask(y), self.num_spks, 1)
     # n x N x T
     if self.non_linear_type == "softmax":
         m = self.non_linear(flow.stack(e, dim=0), dim=0)
     else:
         m = self.non_linear(flow.stack(e, dim=0))
     # spks x [n x N x T]
     s = [w * m[n] for n in range(self.num_spks)]
     # spks x n x S
     return [self.decoder_1d(x, squeeze=True) for x in s]
示例#5
0
 def test_unsqueeze_different_dim(test_case):
     np_arr = np.random.rand(4, 5, 6, 7)
     x = flow.Tensor(np_arr)
     for axis in range(-5, 5):
         y = flow.unsqueeze(x, dim=axis)
         output = np.expand_dims(np_arr, axis=axis)
         test_case.assertTrue(np.allclose(output, y.numpy(), rtol=1e-05))
示例#6
0
文件: moe.py 项目: Oneflow-Inc/models
    def _prob_in_top_k(
        self, clean_values, noisy_values, noise_stddev, noisy_top_values
    ):
        """Helper function to NoisyTopKGating.
        Computes the probability that value is in top k, given different random noise.
        This gives us a way of backpropagating from a loss that balances the number
        of times each expert is in the top k experts per example.
        In the case of no noise, pass in None for noise_stddev, and the result will
        not be differentiable.
        Args:
        clean_values: a `Tensor` of shape [batch, n].
        noisy_values: a `Tensor` of shape [batch, n].  Equal to clean values plus
          normally distributed noise with standard deviation noise_stddev.
        noise_stddev: a `Tensor` of shape [batch, n], or None
        noisy_top_values: a `Tensor` of shape [batch, m].
           "values" Output of tf.top_k(noisy_top_values, m).  m >= k+1
        Returns:
        a `Tensor` of shape [batch, n].
        """

        batch = clean_values.size(0)
        m = noisy_top_values.size(1)
        top_values_flat = noisy_top_values.flatten()

        threshold_positions_if_in = (
            flow.arange(batch, device=noisy_values.device) * m + self.k
        )

        threshold_if_in = flow.unsqueeze(
            flow.gather(top_values_flat, 0, threshold_positions_if_in), 1
        )
        is_in = flow.gt(noisy_values, threshold_if_in)

        threshold_positions_if_out = threshold_positions_if_in - 1
        threshold_if_out = flow.unsqueeze(
            flow.gather(top_values_flat, 0, threshold_positions_if_out), 1
        )

        # is each value currently in the top k.
        prob_if_in = cdf((clean_values - threshold_if_in) / noise_stddev)
        prob_if_out = cdf((clean_values - threshold_if_out) / noise_stddev)

        prob = flow.where(is_in, prob_if_in, prob_if_out)
        return prob
示例#7
0
def _test_unsqueeze_backward(test_case, device):
    np_arr = np.random.rand(2, 3, 4, 5)
    x = flow.tensor(np_arr,
                    dtype=flow.float32,
                    device=flow.device(device),
                    requires_grad=True)
    y = flow.unsqueeze(x, dim=1).sum()
    y.backward()
    test_case.assertTrue(
        np.allclose(x.grad.numpy(), np.ones((2, 3, 4, 5)), 1e-05, 1e-05))
示例#8
0
 def forward(self, x, squeeze=False):
     """
     x: N x L or N x C x L
     """
     if x.dim() not in [2, 3]:
         raise RuntimeError("{} accept 2/3D tensor as input".format(self.__name__))
     x = super().forward(x if x.dim() == 3 else flow.unsqueeze(x, 1))
     if squeeze:
         x = flow.squeeze(x)
     return x
示例#9
0
    def __getitem__(self, idx):
        p = self.files[idx]
        filename = os.path.basename(p)
        speaker = filename.split(sep="_", maxsplit=1)[0]
        label = self.encoder.transform([speaker])[0]
        mcep = np.load(p)

        mcep = flow.Tensor(mcep)
        mcep = flow.unsqueeze(mcep, 0)

        return (
            mcep,
            flow.tensor(speakers.index(speaker), dtype=flow.long),
            flow.tensor(label, dtype=flow.float),
        )
示例#10
0
def _test_unsqueeze(test_case, device):
    np_arr = np.random.rand(2, 6, 9, 3)
    x = flow.tensor(np_arr, dtype=flow.float32, device=flow.device(device))
    y = flow.unsqueeze(x, dim=1)
    output = np.expand_dims(np_arr, axis=1)
    test_case.assertTrue(np.allclose(output, y.numpy(), 1e-05, 1e-05))
 def test_dynamic_attrs(test_case):
     x = flow.full((2, 3), 3.0)
     y = flow.unsqueeze(x, dim=1)
     test_case.assertEqual(y.shape, flow.Size((2, 1, 3)))
     y = flow.unsqueeze(x, dim=2)
     test_case.assertEqual(y.shape, flow.Size((2, 3, 1)))
示例#12
0
 def test_unsqueeze(test_case):
     np_arr = np.random.rand(2, 6, 9, 3)
     x = flow.Tensor(np_arr)
     y = flow.unsqueeze(x, dim=1)
     output = np.expand_dims(np_arr, axis=1)
     test_case.assertTrue(np.allclose(output, y.numpy(), rtol=1e-05))