示例#1
0
    tf = np.arange(1200 * (1 + n_frames * n0),
                   (nmax + 1) * 1200 * n_frames + 1,
                   step=1200)

    print(f"Loading data took f{time.time() - loadingtimestart:.2f}s. ")

    # ----------
    # NEWMA RP OPU
    startingtime = time.time()

    # Pararameters for the NEWMA algorithm
    B = 250  # window size
    d = n_feat

    # Forget factors chosen with heuristic in the paper
    big_Lambda, small_lambda = algos.select_optimal_parameters(B)
    thres_ff = small_lambda
    # Number of random features is set automatically with this criterion
    m = int((1 / 4) / (small_lambda + big_Lambda)**2)
    m_OPU = 10 * m
    print(f'{m_OPU} random features.')

    if pyramid:
        # Pyramid sketch
        nc = 60000
        # Opening the OPU
        opu_mapping = OPUMap(n_components=nc)

        # First encoding
        encoder = BinaryThresholdEncoder(threshold_enc=10)
        minX, maxX = np.min(traj), np.max(traj)
示例#2
0
    # parameters of gmm
    k = 10
    std_mean = 0.11  # the bigger, the more change in means
    wishart = 5  # the bigger, the less change in diagonal variances

    X, ground_truth = gd.stream_GMM(d=d, n=n, nb_change=nb_change, std_mean=std_mean, concentration_wishart=wishart,
                                    k=k)

    # common config
    choice_sigma = 'median'
    numel = 100
    data_sigma_estimate = X[:numel]  # data for median trick to estimate sigma
    B = args.B  # window size

    # Newma config
    big_Lambda, small_lambda = algos.select_optimal_parameters(B)  # forget factors chosen with heuristic in the paper
    print('Chose Lambda = {:.4f} and lambda = {:.4f}'.format(big_Lambda, small_lambda))
    thres_ff = small_lambda
    # number of random features is set automatically with this criterion
    m = int((1 / 4) / (small_lambda + big_Lambda) ** 2)
    print('Number of RFs: {}'.format(m))
    W, sigmasq = feat.generate_frequencies(m, d, data=data_sigma_estimate, choice_sigma=choice_sigma)

    print('Start algo ', algo, ' with fixed threshold')

    def feat_func(x):
        return feat.fourier_feat(x, W)

    detector95 = algos.NEWMA(X[0], forget_factor=big_Lambda, forget_factor2=small_lambda, feat_func=feat_func,
                             adapt_forget_factor=thres_ff)
    detector95.apply_to_data(X)
示例#3
0
                                k=k)

# parameters for algorithms
m = 2000

save_res = True

window_size_list = np.linspace(100, 500, num_tests)
N = 3

running_times = []
for i, window_size in enumerate(window_size_list):
    window_size = int(window_size)
    print('Performing test ', i + 1, ' over ', num_tests, ' window size = ',
          window_size)
    ff, ff2 = algos.select_optimal_parameters(window_size)
    thresh_ff = ff2

    if algo == 'ScanB':
        print('Scan-B')
        ocpobj = algos.ScanB(
            X[0],
            kernel_func=lambda x, y: feat.gauss_kernel(x, y, np.sqrt(sigmasq)),
            window_size=window_size,
            nbr_windows=N,
            adapt_forget_factor=thresh_ff,
            store_values=False)
        t = time.time()
        ocpobj.apply_to_data(X)  # actual computations
        time_method = time.time() - t
        print('time:', time_method)