示例#1
0
    def __init__(self, h, d_model, attn_p=0.1):
        super(HierarchicalMultiHeadAttention, self).__init__()
        self.h = h
        self.d = d_model

        assert d_model % h == 0

        self.d_head = d_model // h

        # first attention layer for states
        self.fc_query = Bottle(Linear(d_model, h * self.d_head, bias=False))
        self.fc_key = Bottle(Linear(d_model, h * self.d_head, bias=False))
        self.fc_value = Bottle(Linear(d_model, h * self.d_head, bias=False))

        # second attention for layers
        self.fc_query_2 = Bottle(Linear(d_model, h * self.d_head, bias=False))
        #~ self.fc_key_2 = Bottle(Linear(d_model, h*self.d_head, bias=False))
        #~ self.fc_value_2 = Bottle(Linear(d_model, h*self.d_head, bias=False))

        # for output
        self.fc_concat = Bottle(Linear(h * self.d_head, d_model, bias=False))
        self.fc_concat_2 = Bottle(Linear(d_model, d_model, bias=False))

        self.sm = nn.Softmax(dim=-1)
        self.sm_2 = nn.Softmax(dim=-1)
        #~ self.attn_dropout = nn.Dropout(attn_p)

        self.attn_dropout = StaticDropout(attn_p)
        self.attn_dropout_2 = StaticDropout(attn_p)
示例#2
0
    def __init__(self,
                 d_model,
                 dropout_p,
                 sequence='nda',
                 static=True,
                 elementwise_affine=True):
        super(PrePostProcessing, self).__init__()
        self.d_model = d_model
        self.dropout_p = dropout_p

        self.steps = list(sequence)

        if onmt.Constants.residual_type == 'gated':
            # gated residual
            # initialize k with one
            self.k = nn.Parameter(torch.ones(1))

        if 'n' in self.steps:

            ln = nn.LayerNorm((self.d_model, ),
                              elementwise_affine=elementwise_affine)
            #~ ln.weight.data.fill_(1)
            self.layer_norm = Bottle(ln)
        if 'd' in self.steps:
            if static:
                self.dropout = StaticDropout(self.dropout_p)
            else:
                self.dropout = nn.Dropout(self.dropout_p, inplace=False)
示例#3
0
    def __init__(self, h, d_model, attn_p=0.1, static=True, share=3):
        super(MultiHeadAttention, self).__init__()
        self.h = h
        self.d = d_model
        self.share = share

        assert d_model % h == 0

        self.d_head = d_model // h  #D.S: d_head = d_v, d_k
        #D.S. fc_query is fully conntected layer to produce the Linear combination of W_q * x_i = q_i for given word embedding x_i
        self.fc_query = Bottle(
            Linear(d_model, h * self.d_head, bias=False)
        )  #D.S: Bottle (Mask for skipping unnecesarry computations)
        self.fc_key = Bottle(
            Linear(d_model, h * self.d_head, bias=False)
        )  #D.S. Params Linear(d_in, d_out, bias=True, nonlinearity='linear'):
        self.fc_value = Bottle(Linear(d_model, h * self.d_head, bias=False))

        self.attention_out = onmt.Constants.attention_out  #TODO: Constant not existing??
        #D.S: Concat all outputs of heads to output of size d_model which is the output of encoder/decoder sublayer
        self.fc_concat = Bottle(Linear(h * self.d_head, d_model, bias=False))

        self.sm = nn.Softmax(dim=-1)  #D.S: Apply softmax on last dimension

        if static:
            self.attn_dropout = StaticDropout(attn_p)
        else:
            self.attn_dropout = nn.Dropout(attn_p)
示例#4
0
    def __init__(self,
                 h,
                 d_model,
                 attn_p=0.1,
                 static=True,
                 share=3,
                 limit_rhs_steps=None):
        super(MultiHeadAttention, self).__init__()
        self.h = h
        self.d = d_model
        self.share = share

        assert d_model % h == 0

        self.d_head = d_model // h
        self.fc_query = Bottle(Linear(d_model, h * self.d_head, bias=False))
        self.fc_key = Bottle(Linear(d_model, h * self.d_head, bias=False))
        self.fc_value = Bottle(Linear(d_model, h * self.d_head, bias=False))
        self.fc_concat = Bottle(Linear(h * self.d_head, d_model, bias=False))

        self.sm = nn.Softmax(dim=-1)

        if static:
            self.attn_dropout = StaticDropout(attn_p)
        else:
            self.attn_dropout = nn.Dropout(attn_p)

        self.limit_rhs_steps = limit_rhs_steps
示例#5
0
    def __init__(self, d_model, d_ff, p, static=True):
        super(FeedForward, self).__init__()
        self.d_model = d_model
        self.d_ff = d_ff
        self.fc_1 = Linear(d_model, d_ff, nonlinearity="relu")
        self.fc_2 = Linear(d_ff, d_model)

        if static:
            self.dropout = StaticDropout(p)
        else:
            self.dropout = nn.Dropout(p)
示例#6
0
    def __init__(self, h, d_model, attn_p=0.1, static=True):
        super(MultiHeadAttention, self).__init__()
        self.h = h
        self.d = d_model

        assert d_model % h == 0

        self.d_head = d_model // h
        self.fc_query = Bottle(Linear(d_model, h * self.d_head, bias=False))
        self.fc_key = Bottle(Linear(d_model, h * self.d_head, bias=False))
        self.fc_value = Bottle(Linear(d_model, h * self.d_head, bias=False))

        self.attention_out = onmt.Constants.attention_out
        self.fc_concat = Bottle(Linear(h * self.d_head, d_model, bias=False))

        self.sm = nn.Softmax(dim=-1)

        if static:
            self.attn_dropout = StaticDropout(attn_p)
        else:
            self.attn_dropout = nn.Dropout(attn_p)