def __init__(self, h, d_model, attn_p=0.1): super(HierarchicalMultiHeadAttention, self).__init__() self.h = h self.d = d_model assert d_model % h == 0 self.d_head = d_model // h # first attention layer for states self.fc_query = Bottle(Linear(d_model, h * self.d_head, bias=False)) self.fc_key = Bottle(Linear(d_model, h * self.d_head, bias=False)) self.fc_value = Bottle(Linear(d_model, h * self.d_head, bias=False)) # second attention for layers self.fc_query_2 = Bottle(Linear(d_model, h * self.d_head, bias=False)) #~ self.fc_key_2 = Bottle(Linear(d_model, h*self.d_head, bias=False)) #~ self.fc_value_2 = Bottle(Linear(d_model, h*self.d_head, bias=False)) # for output self.fc_concat = Bottle(Linear(h * self.d_head, d_model, bias=False)) self.fc_concat_2 = Bottle(Linear(d_model, d_model, bias=False)) self.sm = nn.Softmax(dim=-1) self.sm_2 = nn.Softmax(dim=-1) #~ self.attn_dropout = nn.Dropout(attn_p) self.attn_dropout = StaticDropout(attn_p) self.attn_dropout_2 = StaticDropout(attn_p)
def __init__(self, d_model, dropout_p, sequence='nda', static=True, elementwise_affine=True): super(PrePostProcessing, self).__init__() self.d_model = d_model self.dropout_p = dropout_p self.steps = list(sequence) if onmt.Constants.residual_type == 'gated': # gated residual # initialize k with one self.k = nn.Parameter(torch.ones(1)) if 'n' in self.steps: ln = nn.LayerNorm((self.d_model, ), elementwise_affine=elementwise_affine) #~ ln.weight.data.fill_(1) self.layer_norm = Bottle(ln) if 'd' in self.steps: if static: self.dropout = StaticDropout(self.dropout_p) else: self.dropout = nn.Dropout(self.dropout_p, inplace=False)
def __init__(self, h, d_model, attn_p=0.1, static=True, share=3): super(MultiHeadAttention, self).__init__() self.h = h self.d = d_model self.share = share assert d_model % h == 0 self.d_head = d_model // h #D.S: d_head = d_v, d_k #D.S. fc_query is fully conntected layer to produce the Linear combination of W_q * x_i = q_i for given word embedding x_i self.fc_query = Bottle( Linear(d_model, h * self.d_head, bias=False) ) #D.S: Bottle (Mask for skipping unnecesarry computations) self.fc_key = Bottle( Linear(d_model, h * self.d_head, bias=False) ) #D.S. Params Linear(d_in, d_out, bias=True, nonlinearity='linear'): self.fc_value = Bottle(Linear(d_model, h * self.d_head, bias=False)) self.attention_out = onmt.Constants.attention_out #TODO: Constant not existing?? #D.S: Concat all outputs of heads to output of size d_model which is the output of encoder/decoder sublayer self.fc_concat = Bottle(Linear(h * self.d_head, d_model, bias=False)) self.sm = nn.Softmax(dim=-1) #D.S: Apply softmax on last dimension if static: self.attn_dropout = StaticDropout(attn_p) else: self.attn_dropout = nn.Dropout(attn_p)
def __init__(self, h, d_model, attn_p=0.1, static=True, share=3, limit_rhs_steps=None): super(MultiHeadAttention, self).__init__() self.h = h self.d = d_model self.share = share assert d_model % h == 0 self.d_head = d_model // h self.fc_query = Bottle(Linear(d_model, h * self.d_head, bias=False)) self.fc_key = Bottle(Linear(d_model, h * self.d_head, bias=False)) self.fc_value = Bottle(Linear(d_model, h * self.d_head, bias=False)) self.fc_concat = Bottle(Linear(h * self.d_head, d_model, bias=False)) self.sm = nn.Softmax(dim=-1) if static: self.attn_dropout = StaticDropout(attn_p) else: self.attn_dropout = nn.Dropout(attn_p) self.limit_rhs_steps = limit_rhs_steps
def __init__(self, d_model, d_ff, p, static=True): super(FeedForward, self).__init__() self.d_model = d_model self.d_ff = d_ff self.fc_1 = Linear(d_model, d_ff, nonlinearity="relu") self.fc_2 = Linear(d_ff, d_model) if static: self.dropout = StaticDropout(p) else: self.dropout = nn.Dropout(p)
def __init__(self, h, d_model, attn_p=0.1, static=True): super(MultiHeadAttention, self).__init__() self.h = h self.d = d_model assert d_model % h == 0 self.d_head = d_model // h self.fc_query = Bottle(Linear(d_model, h * self.d_head, bias=False)) self.fc_key = Bottle(Linear(d_model, h * self.d_head, bias=False)) self.fc_value = Bottle(Linear(d_model, h * self.d_head, bias=False)) self.attention_out = onmt.Constants.attention_out self.fc_concat = Bottle(Linear(h * self.d_head, d_model, bias=False)) self.sm = nn.Softmax(dim=-1) if static: self.attn_dropout = StaticDropout(attn_p) else: self.attn_dropout = nn.Dropout(attn_p)